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Executive
Summaries

PROBABILITY MODELING OF
AUTONOMOUS UNMANNED
COMBAT AERIAL VEHICLES
(UCAVs)
by Moshe Kress, Arne Baggesen and
Eylam Gofer

Advances in sensors and command,
control, communications, computers, intel-
ligence, surveillance and reconnaissance
(C4ISR) technologies, coupled with opera-
tional needs, like the war against terror,
have led in recent years to the development
of a new class of weapon systems called
Unmanned Combat Aerial Vehicles, or in
short—UCAVs. Autonomous UCAVs com-
bine a unique set of capabilities in one plat-
form; they have an eye that senses the area
and gathers target information, a brain that
processes this information, wings that move
the UCAV around and keep it aloft and a
fist, in a form of a warhead. This paper
addresses several design and operational
issues related to the employment of
UCAVs. In particular, we study tradeoffs
among properties related to the eye, brain,
wing and fist such as detection, situational
awareness, memory, coordination, vulner-
ability and lethality.

DISTORTED RISK MEASURES
WITH APPLICATION TO
MILITARY CAPABILITY
SHORTFALLS
by Edwin J. Offut, Jeffrey P. Kharoufeh and
Richard F. Deckro

In today’s environment of transforma-
tion, budget restrictions, asymmetric con-
flict, and evolving technologies, it is essen-

tial that the risks associated with military
capability shortfalls are correctly modeled
and evaluated, especially when low-likeli-
hood events result in potentially cata-
strophic losses. This study focuses on se-
lecting an appropriate distortion function
and associated parameters to account for
rare but catastrophic events that may result
from shortfalls in military capabilities. Us-
ing a notional example, we illustrate how
our approach might be applied within the
context of resource allocation.

This work was selected as Best Work-
ing Group Paper in WG 21, Readiness, at
the 73rd MORS Symposium.

ESTIMATING TOTAL PROGRAM
COST OF A LONG-TERM, HIGH-
TECHNOLOGY, HIGH-RISK
PROJECT WITH TASK
DURATIONS AND COSTS THAT
MAY INCREASE OVER TIME
by Gerald G. Brown, Roger T. Grose, and
Robert A. Koyak

The U.S. Army’s Future Combat Sys-
tems (FCS) exemplifies the challenges of
scheduling large-scale military acquisi-
tions. The Cost Analysis Improvement
Group (CAIG) in the Program Analysis and
Evaluation (PA&E) branch of OSD wanted
to compare three different schedule plans
for FCS. Brown, Grose, and Koyak develop
an innovative application of integer pro-
gramming, combined with simulation,
which brings greater realism into analyzing
alternate scheduling plans. Using FCS to
demonstrate their approach, the authors
show how useful comparisons can be made
taking into account uncertainty in task dura-
tions and budget constraints over the plan-
ning cycle of the project.
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ABSTRACT

Unmanned Combat Aerial Vehicles
(UCAVs) are advanced weapon
systems that can loiter autono-

mously in a pack over a target area, detect
and acquire the targets, and then engage
them. Modeling these capabilities in a spe-
cific hostile operational setting is necessary
for addressing weapons’ design and oper-
ational issues. In this paper we develop
several analytic probability models, which
range from a simple regenerative formula
to a large-scale continuous-time Markov
chain, with the objective to address the
aforementioned issues. While these models
capture key individual aspects of the
weapon such as detection, recognition,
memory and survivability, special attention
is given to pack related aspects such as
simultaneous targeting, multiple kills due
to imperfect battle damage assessment, and
the effect of attack coordination. From im-
plementing the models we gain some in-
sights on design and operational consider-
ations regarding the employment of a pack
of UCAVs in a strike scenario.

INTRODUCTION
Advances in sensors and command,

control, communications, computers, intel-
ligence, surveillance and reconnaissance
(C4ISR) technologies, coupled with opera-
tional needs, like the war against terror,
have led in recent years to the development
of a new class of weapon systems called
Unmanned Combat Aerial Vehicles, or in
short-UCAVs. A UCAV is a self-propelled
aerial vehicle that typically loiters over the
target area, seeking targets for engagement.
UCAVs combine a unique set of capabili-
ties in one platform; they have an eye that
senses the area and gathers target informa-
tion, a brain that processes this information,
wings that move the UCAV around and
keep it aloft and a fist, in a form of a war-
head. There are two major types of UCAVs:
disposable and retrievable. Disposable
UCAVs are essentially precision guided
munitions (PGM), like guided missiles,
where the warhead is an integral part of the
platform. Thus, a UCAV of this type can
engage at most one target. Examples of dis-
posable UCAVs are the Israeli Harpy
(Jane’s, 2000a), the German Taifun (Jane’s,

2000b) and the US (Lockheed Martin) LO-
CAAS (Jane’s, 2002). Retrievable UCAVs
are larger vehicles that carry one or more
munitions, which are launched from the
vehicle towards the targets in a controlled
trajectory. Once the weapons are expended,
the UCAV returns to its base for refit and
reload. An example of a retrievable UCAV
is the US Air Force Predator that can carry
a Hellfire laser-guided missile (Airforce
Technology 2005).

In this paper we focus on autonomous
UCAVs, which are designed to operate as a
pack of vehicles that autonomously search,
detect, acquire and attack targets. Similar
operational concepts are imbedded in the
Autonomous Wide Area Search Munition
(AWASM), which is developed by Lock-
heed Martin for the US Air Force (Lock-
heed Martin, 2004). While much attention is
given to the engineering and technological
aspects of UCAV developments, there are
very few studies on operational concepts
for these weapon systems and their ex-
pected effectiveness and efficiency. The
wide range of design and operational fac-
tors and capabilities of such autonomously
acting and interacting weapons will most
likely lead to a wide range of engagement
performance in various scenarios. The
problems are to select proper measures of
effectiveness (MOEs) for the engagement
performance, map the functional relations
between the parameters and the MOEs,
and obtain insights regarding the design of
the UCAVs and their tactical employment.

While target detection and recognition
capabilities, and weapon’s accuracy and le-
thality determine the effectiveness of a sin-
gle vehicle, two phenomena may affect the
performance of the UCAVs as a pack: mul-
tiple acquisitions and multiple kills. Multiple
acquisitions occur when two or more
UCAVs acquire, and are about to engage,
the same target. This situation, which may
lead to redundancy and waste of attack
resources, is due to lack of targeting coor-
dination among the UCAVs. Absent multi-
ple acquisitions, multiple kills occur when
a UCAV engages a target that has already
been killed by another UCAV. This situa-
tion is due to imperfect battle damage as-
sessment (BDA).

The issue of coordination and coopera-
tive control for target acquisition is ad-
dressed in several studies. Jacques (2002)
presents a simple probability model for ex-
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amining some operational aspects of employ-
ing a pack of AWASM. Other studies (e.g.,
Chandler et al (2002), Gillen and Jacques (2002)
and Richards et al (2002)) utilize simulations for
evaluating possible information sharing
schemes, and develop optimization (mixed-in-
teger programming) models that produce task
assignment rules for target observation and
classification and trajectory designs. Jeffcoat
(2004) applies Markov-chain analysis to study
the effect of cueing in the case of two coopera-
tive searchers. The effect of BDA is analyzed in
the context of Shoot-Look-Shoot models. Aviv
and Kress (1997) utilize Markov and dynamic
programming models to evaluate several
shooting tactics when damage information is
only partial. Manor and Kress (1997) prove the
optimality of a certain shooting tactics under
conditions of incomplete information. An opti-
mal assignment of weapons and BDA sensors is
presented in Yost and Washburn (2000), and a
general review of probability models for eval-
uating Shoot-Look-Shoot models in the pres-
ence of partial damage information is given in
Glazebrook and Washburn (2004).

In this paper we develop analytic probabil-
ity models for analyzing some design and op-
erational aspects relating to autonomous
UCAVs. The models range from a simple re-
generative formula to a large scale continuous-
time Markov chain. In addition to considering
individual UCAV properties—detection, rec-
ognition, memory, kill-effectiveness and vul-
nerability—the models explicitly incorporate
also the effect of multiple acquisitions and mul-
tiple kills. Unlike simulations, a single run of
each of these models produces exact probability
distributions and values for the MOEs, and by
applying these models to a set of design and
operational parameters some insights—not all
intuitive—are gained. The rest of the paper is
organized as follows. In the next section we
describe the basic operational setting of the sit-
uation we model, and in the following section
we introduce notation and discuss the basic
assumptions. In “Does Memory Matter?” we
address the issue of UCAV memory and an-
swer the question “is it an important feature?”
Some transient properties of the engagement
process in the case of no situational awareness
are presented in the “Multiple UCAVs, No Sit-

uational Awareness” section. Following this,
we study the complete problem where both
multiple acquisition and situational awareness
are considered. We formulate the continuous-
time Markov model and present the results of
the analysis, along with some design and oper-
ational insights. Finally, a summary and con-
cluding remarks are presented.

THE BASIC SITUATION
A pack of single-weapon autonomous un-

manned combat aerial vehicles (UCAV) is
launched on a mission to attack a set of homo-
geneous targets located on the ground or at sea
in a specific target area. Each UCAV loiters
independently over the target area searching
for valuable targets. The definition of a valuable
target depends on the scenario and mission e.g.,
armored vehicles in tactical ground combat sce-
narios, air-defense missile launchers and radar
sites in suppression of air defense (SEAD) mis-
sions, and command posts in operational-level
missions. All other targets are non-valuable. A
killed valuable target becomes non-valuable.

During its mission, a UCAV can be in one
of three possible situations: search, attack or re-
moved. A UCAV is said to be searching if it is still
loitering and it has not acquired a target for
engagement yet. Once a UCAV detects a target
it locks on the target and attempts to identify if
it is a valuable or non-valuable target. If the
UCAV classifies the target (correctly or incor-
rectly) as non-valuable, the target is rejected (not
acquired), the UCAV disengages and moves on
with its search. If the UCAV classifies a target
as valuable, it acquires the target and attacks it.
The randomly distributed inter-detection time of
a UCAV in a search stage is defined as the time
between two consecutive detections of targets.
This time comprises the loitering time from the
last rejection to a new detection, and the iden-
tification time between the moment of lock-on
and the moment the UCAV identifies the target
and decides to attack (in case of acquisition) or
disengage (in case of rejection). The total search
time of a UCAV is the sum of its inter-detection
times. We assume that the inter-detection times
are not dependent on the classification result.
The randomly distributed attack time is mea-
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sured from the moment the target is classified
as valuable to the moment the weapon hits the
ground (or the surface). Figure 1 describes the
aforementioned mission time parameters.

Once a UCAV enters an attack stage, it is
committed to attack the acquired target and
therefore cannot go back to the search stage,
even if during the time of the attack another
UCAV hits the target and kills it. Thus, if sev-
eral UCAVs acquire the same target, at most
one of them can be effective. We consider a
UCAV that is either disposable or carries a
single missile, therefore after an attack the
UCAV is removed from further consideration
in the current mission. A UCAV may fail during
the search or attack stages if it is intercepted by
enemy’s air defense or it crashes due to techni-
cal failure or accident. We assume imperfect
sensitivity and specificity; therefore identifica-
tion may be subject to error. A valuable target
may be identified, due to imperfect sensitivity,
as non-valuable and therefore passed over by
the UCAV, and a non-valuable target may be
identified, due to imperfect specificity, as valu-
able and therefore attacked by the UCAV. We
assume that the nominal loitering time (e.g.,
due to fuel consumption) is long compared to
the minimum between the time it takes a UCAV
to acquire and attack a target and the time until it
(possibly) fails. In other words, a UCAV never
runs out of fuel before its mission is over.

Given this combat situation, we wish to mea-
sure the effectiveness of the UCAVs, perform sen-
sitivity analysis, and determine tradeoffs among
design and operational parameters.

NOTATION AND BASIC
ASSUMPTIONS

The probabilities of correctly identifying a
valuable target and correctly identifying a non-
valuable target are q1 and q2, respectively. That
is, q1 represents the sensitivity of the UCAV’s
sensor and data processing unit, and q2 their
specificity. The identification attempts are inde-
pendent. The sensitivity and specificity of a
UCAV determine its BDA capabilities. BDA (bat-
tle damage assessment) refers to the ability of a
shooter to distinguish between a live valuable
target and a killed one (which becomes non-
valuable). For simplicity we assume that the
specificity of the UCAV with respect to initially
non-valuable targets is the same as for killed
valuable targets. The models can be easily gen-
eralized to account for target dependent speci-
ficity. An acquired target is successfully hit and
killed with probability p. To simplify the
model, and without loss of generality, we as-
sume that the probability of a kill given a hit is
1. We assume that the inter-detection and the
attack times are exponentially distributed ran-
dom variables with parameters � and �, respec-
tively. While the former is a reasonable as-
sumption based on the independent and
memory-less nature of the search process (see
Section 4 below), the latter is an approximation,
which is similar to the exponential inter-firing
assumption in stochastic duel or stochastic
Lanchester models (e.g., Kress (1991) and Kress
and Talmor (1999)). The failure rate of UCAVs

Figure 1. UCAV Mission Timeline.

PROBABILITY MODELING OF AUTONOMOUS UCAVs
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is assumed to be constant and therefore the
time until a UCAV fails is exponentially distrib-
uted random variable with parameter �. The
launched pack comprises N UCAVs. The total
number of targets—valuable and non-valu-
able—in the target zone at the beginning of the
operation is T, out of which L targets are valu-
able and T-L targets are non-valuable.

DOES MEMORY MATTER?
Consider a single UCAV, which detects a

target and decides, correctly or incorrectly, to
reject it. This event may or may not register in
the UCAV’s memory. If the UCAV remembers
the rejected targets, then it would not consider
any of them for future acquisition and there-
fore, after a finite number of detections, the
pool of potential targets for engagement may
be depleted. Absent memory, and since the de-
tections are independent, it is possible that the
UCAV will acquire a previously rejected target.
The question is, can memory enhance (or re-
duce) the probability that the search process
terminates with a killed valuable target?

First we assume no memory (NM). That
is, the UCAV may detect and examine the
same target more than once. The probability
PNM(T,L) that a UCAV acquires and kills a valu-
able target, given there are a total of T targets
and L valuable targets in the target area, satis-
fies the following regenerative equation:

PNM�T, L� �
�

� � �
Probability of

successful
detection

Ç
� � �

� � � �
L
T � q1 � p

Probability of
successful attack

Ç

� �L
T � �1 � q1� �

T � L
T � q2�

Probability the target is rejected
Ç

� PNM�T, L��. (1)

The solution of (1) is:

PNM�T, L� � P���

�
�

� � �
�

� � � � q1 � p
� � � � �1 � �� � � � � � q1 � � � q2

(2)

where � � L/(T � L). That is, the acquisition
probability depends on the ratio between the
numbers of valuable and non-valuable targets
and not on their absolute numbers. Also it de-
pends on the endurance ratios �/� and �/�, and
not on the absolute values of the detection,
attack and failure intensities.

Suppose now an ideal situation where the
UCAV has perfect memory and situational
awareness and therefore it would always detect
and examine a new target. In that situation it is
possible that the search process will terminate
with no acquisition. In that case, we assume
that the UCAV instantaneously selects any of
the T targets at random and attacks it. This
termination condition is appropriate in partic-
ular in time-critical missions. Since previously
detected targets are automatically discarded
from the search process, the rate at which new
targets are detected decreases as the number of
detected targets increases. Specifically, if the
nominal detection rate at the beginning of the
operation is � then after k detected (and re-
jected) targets, the rate at which new targets are
detected is �(1 � k/T). The probability of kill-
ing a valuable target PM(T,L) is

PROBABILITY MODELING OF AUTONOMOUS UCAVs
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PM�T, L� � q1 � p �
�

� � �
� �

i�0

L�1 �
j�0

T�L �L
i ��T � L

j �
� T

i � j�
�

L � i
T � �i � j� � �

k�0

i�j � ��1 � k/T�

��1 � k/T� � �� � �1 � q1�
i � q2

j

(3)Probability that a target was successfully attacked in one of the T detections

�
�

� � �
�

L
T � p � �

k�0

T�1� ��1 � k/T�

��1 � k/T� � �� � �1 � q1�
L � q2

T�L

Probability that all T detections resulted in rejection and therefore
the target for attack is chosen randomly

.

Suppose that the target area contains a total of
16 targets. We consider three target postures in

which the proportion of valuable targets
L
T are

1/4 (e.g., a section of armored vehicles), 1/2
(e.g., two sections) and 3/4 (e.g., a company).
For each one of the target postures we consider

two endurance ratios
�

�
; 20 (high survivability

rate), and 3 (low survivability rate). We assume
also two attack situations: slow execution
where � � � and fast execution, where � � 10�.
In all the scenarios we assume that the hit prob-
ability given acquisition p � 1, which means
that P is in fact the acquisition probability. Note
that p is a multiplicative factor that does not
affect the relative effectiveness of the no mem-
ory and full memory cases. For each one of the
twelve scenarios we evaluate the kill (acquisi-
tion) probability P for various values of sensi-

tivity probability q1 and specificity probability
q2. Tables A1–A3 in the Appendix detail the
results of the analysis for three target postures:
L
T �

1
4,

1
2,

3
4, respectively. Figures 2–4 present

the comparison between the no-memory (black
lines) and full-memory (grey lines) cases for the

three target postures �L
T �

1
4,

1
2,

3
4� with

�

�
� 20

and � � 10�.
Clearly, P is monotonic increasing in both

q1 and q2; better sensitivity and specificity re-
sults in higher acquisition probability. While
for some (relatively small) values of q1 and q2
the no-memory system outperforms the full-
memory system, and for other (relatively large)
values the opposite is true, the differences be-
tween the two cases are negligible. This conclu-
sion is robust with respect to the detection,
attack and failure rates (see Appendix). For

Figure 2. Probability of Acquiring a Valuable Target, L/T � 1/4.

PROBABILITY MODELING OF AUTONOMOUS UCAVs
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example, if q1 � 0.8 and q2 � 0.7 then the
relative differences between PM and PNM, over
all twelve scenarios, range between 0% and less
than 3%. As shown in Tables A1–A3 in the
appendix, this conclusion remains unchanged
for longer inter-detection where � � �.

Based on the analysis we can conclude that,
under our assumptions, memory is rather re-
dundant design feature in UCAVs. The pro-
cessing capacity on board the UCAV would be
better utilized for other data processing or stor-
ing tasks. Note however that this conclusion
may not be true in other tactical settings such as
time-critical missions or situations where the
search time is limited due to operational or
logistical constraints. From now on we assume
that the UCAVs have no memory.

MULTIPLE UCAVS, NO
SITUATIONAL AWARENESS

In this section we explore temporal effects
of the UCAVs’ target engagement process. We
assume no situational awareness, which means
that any detected target is attacked. In other
words, q1 � 1 � q2 � 1.

The probability that at time t of the engage-
ment a certain UCAV is still searching is

e�(��� )t. Using conditioning, we obtain that the
probability the UCAV failed by time t is:

QF�t� �
��

� � ��
0

t

e����� �s�1 � e����� ��t�s��ds

Probability of failure during the attack stage

� ��
0

t

e����� �sds (4)

Probability of failure
during the search stage

� �
��

� � �	1 � e����� �t

� � �
�

e����� �t

� � �
�1 � e������t�


�
�

� � �
�1 � e����� �t� if � � �

��

� � �	1 � e����� �t

� � �
� te����� �t


�
�

� � �
�1 � e����� �t� if � � �

.

The probability that the UCAV has completed
its mission by time t without failure is

Figure 3. Probability of Acquiring a Valuable Target, L/T � 1/2.
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QA�t� �
��

� � ��
0

t

e����� �s�1 � e����� ��t�s��ds

� �
��

� � �

�1 � e����� �t

� � �
�

e����� �t�1 � e������t�

� � � � if � � �

�2

� � ��1 � e����� �t

� � �
� te����� �t� if � � �,

(5)

and QA�t�O¡
t3�

��

�� � ���� � ��
.

Since the UCAVs are independent, the CDF
of the duration of the operation is:

FD�t� � �QF�t� � QA�t��N (6)

and the expected number of killed targets at
time t is

Et � L�1 � �1 �
QA�t� p

T �N� . (7)

Consider the base case where the average detec-
tion time is 5 minutes, the average attack time is
30 seconds and the mean time between failures
(MTBF) is 100 minutes, that is, � � 0.2, � � 2
and � � 0.01. Figure 5 depicts the CDF of the
operation completion time for various pack
sizes N.

The 90th percentiles of these CDFs are 18,
23, 26, 27 and 28 minutes for packs of 4, 8, 12, 16
and 20 UCAVs, respectively. Figures 6 and 7

Figure 4. Probability of Acquiring a Valuable Target, L/T � 3/4.

Figure 5. CDF of the Operation Completion Time for Varying N.

PROBABILITY MODELING OF AUTONOMOUS UCAVs

Military Operations Research, V11 N4 2006 Page 11



present the CDF of the mission completion time
for varying detection intensities (�) and failure
intensities (�), respectively. In both cases we
assume a pack of N � 8 UCAVs. The values of
the other parameters are as in the base case.

The 90th percentiles of these distributions
are 72, 40, 21, and 5 minutes for mean detection
times of 20, 10, 5 and one minutes, respectively.

The 90th percentiles of the CDFs in Figure 7
are 22, 21, 20, 18 and 14 minutes for mean
interception times of 200, 100, 50, 20 and 10
minutes, respectively. While the completion
time of the mission is sensitive to the pack size
and very sensitive to the detection intensity, it
is rather insensitive to the failure rate within
the relevant range. In other words, for the se-
lected ranges of the time parameters, the most
significant factor is the detection time.

Figure 8 shows the expected number of
killed targets, out of an initial cluster of L � T �
15 targets (i.e., all targets are initially valuable),
as a function of time. For �, � and � we assume
the base case and N � 8 UCAVs.

Absent situational awareness, the ex-
pected number of killed targets approaches
asymptotically 3.4, 4.5 and 5.6 targets for kill
probabilities .5, .7 and .9, respectively. These
limit values are reached relatively fast—after
about 20 minutes of operation. Figure 5.4 can
help obtain some guidelines for operating the
UCAVs in case they are not disposable and
can be used in future operations. For exam-
ple, it can identify a time t* at which all
searching UCAVs will be programmed to
abandon their mission and return to the home
base.

Figure 6. CDF of the Operation Completion Time for Varying �.

Figure 7. CDF of the Operation Completion Time for Varying �.
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MULTIPLE UCAVS WITH
IMPERFECT BDA AND LIMITED
COORDINATION

Assume now that the UCAVs have limited
situational awareness, that is, 0 	 q1, q2 	 1.
Next we develop a continuous time Markov
chain that represents our combat situation.

States
Let n denote the number of searching

UCAVs. Initially, n � N. A state in the model is
represented by (n, mi; i � 0, . . ., N � n) where
mi indicates the number of valuable targets that
are currently under attack (but have not been
hit yet) by exactly i UCAVs each. An absorbing
state in the engagement process is of the form
(0, m0, 0, . . ., 0), which means that there are no
UCAVs at the search stage (n � 0) and no
UCAVs at the attack stage. The number of valu-
able targets killed by the UCAVs in an absorb-
ing state is L � m0.

Example: let L � N � 2. There are 11 possi-
ble states: (2,2,0,0), (1,2,0,0), (1,1,1,0), (1,1,0,0),
(0,2,0,0), (0,1,1,0), (0,1,0,1), (0,1,0,0), (0,0,2,0),
(0,0,1,0) and (0,0,0,0). For example, the state
(1,2,0,0) represents the situation where one
UCAV is searching and the other UCAV is
removed following a failed attack (acquired a
non-valuable target or missed a valuable target or
has crashed). The state (1,1,0,0) represents a sim-
ilar situation, however the removed UCAV suc-
cessfully acquired and killed a valuable target.

State Transitions
An event in this process is a detection, or a

kill or a miss or a failure of the UCAV. A
detection may lead to a change in the state if the
target is identified as valuable, otherwise no
change in state is recorded. A kill or a miss or a
failure always results in a change of state. Fig-
ure 9 presents the possible transitions for the
states in the above example (L � N � 2). The
shaded boxes indicate absorbing (terminal)
states.

In general, the following states are possible
transitions from the state (n, mi; i � 0, . . ., N �
n).

(i) A searching UCAV has acquired a valu-
able target that is currently attacked by j other
UCAVs:

�n � 1, mj � 1, mj�1 � 1,

mi; i � j, j � 1� with probability

�1/T�� � n � mj � q1

�� � �� � n � �� � �� � �
i�1

N�n

mi � i

. (8)

The numerator in (8) is the rate of detection (�n)

 the probability of selecting a valuable target
that is currently attacked by j other UCAVs
(mj/T) 
 the probability of correctly identifying
the valuable target (q1).

(ii) A searching UCAV has acquired a non-
valuable target or has failed (removed prema-
turely):

Figure 8. Expected Number of Killed Targets.
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�n � 1, mi; i � 0, . . . ,

N � n � 1� with probability

�1/T� � � � n � �T � �
i�0

N�n

mi� � �1 � q2� � �n

�� � �� � n � �� � �� � �
i�1

N�n

mi � i

. (9)

The numerator in (9) is the rate at which non
valuable targets are acquired (� the rate of
detection (�n) 
 the probability of selecting a
non-valuable target ��T � �i�0

N�n mi�/T� 
 the
probability of incorrectly identifying this target
as valuable (1 � q2)) � the failure rate of search-
ing UCAVs (� �n).

(iii) A UCAV is the first to kill a valuable
target that is currently attacked by j UCAVs:

�n, mj � 1; mi; i � j� with probability

� � j � mj � p

�� � �� � n � �� � �� � �
i�1

N�n

mi � i

. (10)

The numerator in (10) is the attack rate of a
single UCAV (�) 
 the number of UCAVs that
are attacking this type of targets ( j � mj) 
 the
kill probability of a single UCAV (p).

(iv) A UCAV that is attacking a valuable
target, which is currently attacked by j UCAVs,
is removed without completing its mission, that
is, misses the target or fails during the attack:

�n, mj�1 � 1, mj � 1;

mi; i � j � 1, j� with probability

�� � �1 � p� � �� � j � mj

�� � �� � n � �� � �� � �
i�1

N�n

mi � i

. (11)

The numerator in (11) is the rate of attacks that
miss the target (� � (1 � p) � j � mj, see also (10)
above) � the failure rate of attacking UCAVs
(� � j � mj)).

(v) A detected target is classified as non-
valuable and therefore passed over:

�n, mi; i � 0, . . . ,n� with probability

�1/T� � � � n � 	�1 � q1� � �
i�0

N�n

mi � q2 � �T � �
i�0

N�n

mi�

�� � � � � n � �� � � � � �

i�1

N�n

mi � i

.

(12)

Figure 9. The State Transitions, L � N � 2.
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The numerator in (12) is the rate at which valu-
able targets are misclassified as non-valuable
(� detection rate (�n) 
 probability of selecting
a valuable target ��i�0

N�n mi/T� 	 the probability
for type-1 error (1 � q1)) � the rate at which
non-valuable targets are classified correctly as
such �� � n � q2 � �T � �i�0

N�n mi�/T�.
Suppose now that the UCAVs can share

information and coordinate their attacks. Spe-
cifically, we assume that during the attack stage
a UCAV sends out a signal that marks (“high-
lights”) its target. The signal, which is set off
when the UCAV is removed, may be received
by any searching UCAV with a fixed probabil-
ity r. The signals from the various UCAVs are
independent. Thus, a searching UCAV that de-
tects a target that is currently attacked by j
other UCAVs avoids it without further investi-
gation with probability 1 � (1 � r)j. Notice that
if r � 1 then no incidents of multiple acquisi-
tions (attacks) can occur. The transition rates
shown above change only for cases (i) and (v):

(i) A searching UCAV has acquired a live
(valuable) target that is already attacked by j
other UCAVs:

�n � 1, mj � 1, mj�1 � 1,

mi; i � j, j � 1� with probability

�1/T�� � n � mj � q1 � �1 � r�j

�� � �� � n � �� � �� � �
i�1

N�n

mi � i

. (13)

(v) A target is passed over (is valuable but
recognized as being acquired by other UCAVs
or is classified as non-valuable or is non-valu-
able):

�n, mi; i � 0, . . . ,N � n� with probability

�1/T� � � � n

� 	�
i�0

N�n

mi��1 � r�i � �1 � q1� � 1 � �1 � r�i� � q2�T � �
i�0

N�n

mi�

�� � � � � n � �� � � � � �

i�1

N�n

mi � i

.

(14)

All other transitions ((ii)–(iv)) remain the same.
To keep the model tractable, we assume

that this transfer of attack information does not

apply to non-valuable targets. Otherwise we
need to keep track also of the number of non-
valuable targets that are being attacked by i
UCAVs, which leads to a considerable expan-
sion of the state space. If the number of non-
valuable targets is relatively high compared to
the numbers of valuable targets and UCAVs,
and if the specificity of the sensor q2 is reason-
ably high, then we can assume that instances of
multiple acquisitions of non-valuable targets
are highly unlikely. In particular, we assume
that there are practically no incidents where a
UCAV avoids acquiring a certain non-valuable
target solely because it receives a signal from
another UCAV that has already acquired (erro-
neously) that non-valuable target. Another as-
sumption that leads to the same transition
probabilities is that r � 0 for acquisitions of
non-valuable targets (e.g., a UCAV realizes
rather quickly that it has acquired a non-valu-
able target and sets the signal off immediately).

Measures of Effectiveness
To evaluate the relative effects of design

and operational parameters we define four
measures of effectiveness (MOE):

• Expected relative effectiveness (EL) is the ratio
between the expected number of killed valu-
able targets and their initial number. This
MOE represent the effectiveness of the at-
tack. Formally,

EL �
E�X�

L (15)

where X is the number of killed valuable tar-
gets.

• Expected relative efficiency (EN) is the ratio be-
tween the expected number of killed valu-
able targets and the initial number of UCAVs
in the attack pack. This MOE represent how
efficient is the mission. Formally,

EN �
E�X�

N . (16)

• Probability of attaining the mission objective (P�)
is the probability that at least a fraction � of
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the L valuable targets are killed. This MOE
represents tactical or operational objectives,
as set by the mission commander. Clearly,
this MOE is non-trivial only if N 
 �L. For-
mally,

P� � Pr�X 
 �L�. (17)

In addition to the three MOEs we compute also
the expected duration of a mission ETime. The
results are obtained by utilizing computational
procedures of absorbing Markov chains (e.g.,
Minh (2000).

Analysis
The time parameters in our base case are as

in Section 5: � � 0.2, � � 2 and � � 0.01. The
sensitivity, specificity and kill probabilities are
q1 � 0.7, q2 � 0.8 and p � 0.8, respectively.
These values represent only a reasonable refer-
ence point for the technical and operational
parameters of UCAVs since most of these vehi-
cles are still in the development phase. Even if
some relevant data do exist, it would be most
likely classified. Notwithstanding this limita-
tion, the ensuing sensitivity analysis provides
insights into tradeoffs among the parameters of
the vehicle and the combat scenario. The base
case scenario comprises a pack of N � 8 UCAVs
that engages a total of T � 12 targets, out of
which L � 8 are valuable. We first assume no
coordination, that is r � 0. The expected num-
ber of killed valuable targets is 4.32 with en-
gagement effectiveness and efficiency of EL �

EN � 0.54. The probability of attaining the mis-
sion objective—at least 40% of the valuable tar-
gets killed—is P0.4 � 0.77. The expected dura-
tion of the operation is ETime � 30 min. If the
UCAVs are fully coordinated then EL � EN �
0.55, P0.4 � 0.78 and ETime � 30.4 min. Clearly,
in the base case, coordination has no significant
effect; the changes in the MOEs values are neg-
ligible.

Next we investigate the impact of various
parameters on the values of the MOEs.

(a) Detection and Attack Rates
For a fixed failure rate of � � 0.01 (base

case) Figures 10–13 present the effect of the
detection rate (�) and the attack rate (�) on the
expected relative effectiveness EN and on the
probability of attaining a mission objective of
40% killed valuable targets P0.4. Since L � N,
the expected relative effectiveness is also the
expected relative efficiency. Figures 10 and 11
apply to the case where there is no coordination
among the UCAVs (r � 0), while Figures 12 and
13 apply to the case of full coordination (r � 1).

In all four charts the mean detection time of
a UCAV ranges between 10 minutes (� � 0.1)
and 20 seconds (� � 3). Both MOEs—EN and
P0.4—are computed for four mean attack times
that range from 1 minute (� � 1) to 25 seconds
(� � 4). In the case of no coordination (r � 0),
shorter attack times result in better perfor-
mance of the UCAVs with respect to both
MOEs. This conclusion is quite intuitive for
cases of relatively high sensitivity, specificity
and kill probability. Shorter attack times reduce

Figure 10. The Effect of Detection Rate on the Expected Relative Effectiveness (Efficiency), r � 0.
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the possibility of redundant multiple attacks.
The observation that higher detection rate may
be counter-effective, as displayed by the uni-
modal plots in Figures 10 and 11, is less intui-
tive. The monotonic increasing part for small
values of � represents a race between the de-
tection and failure processes; increasing detec-
tion rate decreases loitering time and therefore
also the chances for failure. The monotonic de-
creasing part for larger values of � is explained
by exactly the same arguments used above for
explaining the positive effect of increasing �;
shorter detection time relative to the attack time
implies more opportunities for simultaneous
acquisitions that lead to multiple attacks. The
effect of � is discussed later on. In the case of
perfect coordination (r � 1) there can be no
multiple acquisitions and therefore higher de-

tection rate is always better. Since the attack
time is very short compared to the MTBF (��1)
of the UCAVs, perfect coordination implies that
the effect of the attack rate � is negligible.

Note that the graphs of EN and P0.4 have
similar shapes. For brevity we display from
now on mostly results regarding EN or EL.

(b) Sensitivity, Specificity and Kill Probability
An interesting question regarding the

UCAV’s sensor capabilities is: which property is
more important, sensitivity or specificity? Recall
that higher sensitivity means lower probability
for type I error (misclassifying a valuable tar-
get), while higher specificity implies lower
probability for type II error (misclassifying a
non valuable target). Figures 14 and 15 show
the effect of changing the sensitivity and spec-
ificity of the sensor, respectively. The results

Figure 11. The Effect of Detection Rate on the Probability of Attaining 40% Killed Valuable Targets, r � 0.

Figure 12. The Effect of Detection Rate on the Expected Relative Effectiveness (Efficiency), r � 1.
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are displayed for 4 values of kill probability:
0.6, 0.7, 0.8 and 0.9. All other parameters are set
at their base case values.

Note that while EN is a concave function of
the sensor’s sensitivity, it is a convex function
of its specificity. When we move q1 from 0.5 to
1, EN increases by 18% for all values of p. The
corresponding increase in EN when q2 varies is
47% for p � 0.6 and 53% for p � 0.9. We
conclude that the effect of specificity on the
outcome of the attack is stronger than sensitiv-
ity, and this effect becomes more significant for
higher values of kill probability. Specifically,
suppose that the decision is either to increase
the sensitivity of the sensor by 20% from its
current base case value, or to increase by a
similar rate its specificity. Recall that for the
base case EN � 0.54. If q1 is increased by 20%

then EN � 0.56, while if q2 is increased by 20%
then EN � 0.64. The choice is clear; in order to
increase the effectiveness of the attack one
should invest in improving the specificity of the
UCAV’s sensor, rather than its sensitivity. This
conclusion applies to our case of disposable (or
one-weapon) UCAVs where a false positive er-
ror is irreversible. This may not be the case if
the UCAV has multiple weapons and the mis-
sion is not time-critical. The recommendation to
invest in better specificity is enhanced by other
measures of merit such as the human and po-
litical cost of attacking a wrong target (e.g., the
bombing of the Chinese embassy in Belgrade
by NATO forces in 1999).

(c) Failure Rate and Coordination
Arguably, UCAVs’ coordination can be ef-

fective only if the attack stage is long compared

Figure 13. The Effect of Detection Rate on the Probability of Attaining 40% Killed Valuable Targets, r � 1.

Figure 14. The Effect of Sensor Sensitivity on the Expected Relative Effectiveness.
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to the search stage. If it is short, then multiple
acquisitions are very unlikely and therefore
there is no practical need for coordination. It is
shown next that the failure rate may affect the
benefit the pack gains from coordination. Let
L � 6, and suppose that the attack time is four
time shorter than the detection time, which is
set at its base case value. This situation may
represent a standoff attack. The failure rate
ranges between 0 (no failure during the mis-
sion) to 0.1 (MTBF � 10 min). Figure 16 pre-
sents the expected relative effectiveness for r �
0 and r � 1. All other parameters are set at their
base case values.

As one would expect, the effectiveness of
the UCAVs decreases as the failure rate in-
creases. Note that even in this extreme scenario,
where conditions are relatively favorable for

effective coordination, the effect is minute.
Moreover, while for smaller failure rates full
coordination is somewhat more effective than
no coordination, the opposite is true for larger
failure rates for which coordination actually
reduces the mission effectiveness. The latter
counter-intuitive observation is due to the fact
that if UCAVs pass over targets, they prolong
their stay in the target area and therefore in-
crease their chances to be intercepted before
staging their attack.

Another way to avoid multiple acquisitions
is to employ the UCAVs sequentially rather
than simultaneously as a pack. This tactical so-
lution to multiple acquisition problem leads to
a different Markov model that is based on the
probabilities given in (2) above. Taking once
again L � 6, � � �/4 and the rest of the pa-

Figure 15. The Effect of Sensor Specificity on the Expected Relative Effectiveness.

Figure 16. The Effect of Failure Rate and Coordination on the Expected Relative Effectiveness.
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rameters at their base case values, Figure 17
presents the value of the expected relative ef-
fectiveness EL for three cases: No coordination,
perfect coordination and sequential engage-
ment. These values are computed as functions
of the specificity probability q2.

For poor to moderate specificity the three
graphs coincide. For high specificity, eliminat-
ing multiple acquisitions, either by a design
features (coordination) or tactics (sequential en-
gagement) has some effect. The effect is similar
in both cases, with a slight advantage to the
tactical solution, which is applicable only for
non time-critical targets.

(d) Scenario Parameters
So far we have analyzed the effect of pa-

rameters that are associated with the design of
the UCAVs. Figures 18 and 19 display the effect
of the scenario. Figure 18 presents the value of
EL when the number of valuable targets L and
the specificity probability q2 vary in the target
area. Note that besides being a design parame-
ter, specificity is also a scenario parameter that
may depend on the clutter in the target area.
Figure 19 displays the combined effect of L and
the number of UCAVs N. The MOE here is P0.4,
which represents a specific tactical objective.

From Figure 18 we see once again the effect
of specificity. At low specificity, the rate of
killed valuable targets is relatively insensitive
to their number. At high specificity this rate
decreases with the number of targets, as one
would expect.

Figure 19 examines the impact of the num-
ber of valuable targets on the engagement per-

formance from another angle. For small num-
ber of UCAVs the 40% attrition probability is
very sensitive to the number of targets. This
sensitivity diminishes as N gets larger. Note
that Figure 19 may be used also as a decision
support tool for mission planning. For example,
if there are four valuable targets in the target
area, then in order to attain the mission objec-
tive—two killed targets—with probability of at
least 0.8, then the pack must contain at least
seven UCAVs. This can be seen by observing
the point at which the graph corresponding to
L � 4 crosses the 0.8 threshold.

SUMMARY, CONCLUSIONS AND
FUTURE RESEARCH

In this paper we explore several design and
operational aspects of employing a pack of au-
tonomous UCAVs against valuable targets that
are imbedded among other, non-valuable tar-
gets. Utilizing newly developed analytic prob-
ability models, we evaluate the effect of key
design and operational parameters on the per-
formance of the pack. First, it is shown that
under reasonable assumptions memory is a re-
dundant property. The processing capacity in
the UCAV brain should be utilized to other
tasks such as enhanced recognition capability.
Second, based on a transient model, inter-tem-
poral behavior of the system is explored and
some insights regarding mission duration and
maximum allowable loitering time are ob-
tained. It is shown that detection rate is a major

Figure 17. The Effect of Eliminating Multiple Acquisitions.
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factor in determining the duration of the oper-
ation. Finally, in Section 6 we implement a
large-scale continuous-time Markov model to
analyze the effect of weapon coordination on
multiple acquisitions, and the effect of BDA on
multiple kills. The two main conclusions from
the analysis are: (1) attack coordination among
UCAVs is largely an insignificant feature for
the scenarios analyzed, and (2) specificity of the
UCAV’s sensor is more important than its sen-
sitivity. The first conclusion is true as long as
the valuable targets are homogeneous. It essen-
tially says that the random uniform and inde-
pendent selection is the right thing to do when
engaging uniform targets. If among the valu-
able targets there are some that are more
noticeable or attractive then targeting coordina-
tion may improve the engagement perfor-

mance. The case of non-homogeneous targets is
left for future research. The second conclusion
tells us that avoiding non-valuable targets is
more beneficial than picking correctly valuable
ones. This observation, which at first glance
may look a little odd, is quite logical. Type I
error by a UCAV (passing over a valuable
target) can be rectified later on. Type II error
(acquiring and attacking non-valuable target)
cannot.

The models described in this paper are lim-
ited to homogeneous targets, homogeneous
UCAVs and to the engagement rules specified.
Another limitation is the assumption that all
the temporal random variables are exponential.
While this assumption is reasonable for the fail-
ure and detection processes, the attack time is
probably not well represented by a constant

Figure 18. The Effect of the Number of Valuable Targets.

Figure 19. Probability of Attaining 40% Killed Valuable Targets as a Function of M and N.
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failure-rate (CFR) distribution. Accordingly,
the models presented in this paper may be ex-
tended to account for non-homogeneous tar-
gets, multiple types of UCAVs and more gen-
eral time CDFs (e.g., non-exponential attack
times). Another interesting and potentially im-
portant extension is to incorporate in the mod-
els decision rules where the UCAVs manifest
some level of cognitive capability. Specifically,
in reality both sensitivity and specificity prob-
abilities may depend on the time a UCAV
spends investigating a target. This aspect is not
captured in our models and may lead to inter-
esting optimization models.
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APPENDIX
Acquisition probabilities in the full-mem-

ory (M) and no-memory (NM) cases.

Table A2. Acquisition Probability—Proportion of Valuable Targets � 1/2

q1 q2

�

�
� 20

�

�
� 3

� � � � � 10� � � � � � 10�

NM M NM M NM M NM M

0.5 0.5 .43 .43 .45 .45 .23 .22 .29 .29
0.7 .53 .53 .55 .55 .26 .25 .33 .32
0.9 .68 .67 .71 .71 .30 .29 .38 .37

0.7 0.5 .51 .52 .54 .54 .28 .28 .36 .36
0.7 .61 .61 .63 .64 .31 .31 .46 .46
0.9 .74 .74 .77 .78 .36 .36 .49 .49

0.9 0.5 .57 .58 .60 .60 .33 .33 .45 .45
0.7 .68 .69 .69 .70 .36 .36 .49 .50
0.9 .79 .80 .81 .82 .41 .41 .55 .55

Table A1. Acquisition Probability—Proportion of Valuable Targets � 1/4

q1 q2

�

�
� 20

�

�
� 3

� � � � � 10� � � � � � 10�

NM M NM M NM M NM M

0.5 0.5 .22 .22 .23 .23 .11 .11 .15 .14
0.7 .30 .30 .31 .31 .14 .14 .18 .17
0.9 .48 .47 .50 .49 .18 .17 .23 .22

0.7 0.5 .28 .28 .29 .29 .15 .15 .19 .19
0.7 .37 .38 .39 .40 .18 .18 .23 .23
0.9 .56 .56 .58 .59 .23 .22 .29 .29

0.9 0.5 .33 .34 .34 .35 .18 .18 .23 .24
0.7 .43 .44 .45 .46 .22 .22 .28 .28
0.9 .61 .63 .64 .66 .27 .27 .34 .35
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Table A3. Acquisition Probability—Proportion of Valuable Targets � 3/4

q1 q2

�

�
� 20

�

�
� 3

� � � � � 10� � � � � � 10�

NM M NM M NM M NM M

0.5 0.5 .65 .65 .68 .67 .34 .33 .44 .43
0.7 .71 .71 .75 .74 .36 .35 .46 .46
0.9 .79 .79 .83 .82 .38 .38 .50 .49

0.7 0.5 .71 .72 .75 .75 .40 .40 .52 .51
0.7 .77 .77 .80 .81 .42 .42 .54 .54
0.9 .83 .83 .87 .87 .45 .44 .58 .57

0.9 0.5 .76 .76 .79 .80 .45 .45 .58 .58
0.7 .80 .81 .84 .84 .47 .47 .60 .60
0.9 .86 .86 .90 .90 .49 .49 .63 .63
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ABSTRACT

We consider the problem of select-
ing an appropriate distortion
function and associated parame-

ters to account for rare but catastrophic
events that may result from a shortfall of
military or security capabilities. Addition-
ally, we describe the means by which a
decision maker may allocate resources
among various risk-mitigating systems,
subject to a finite budget constraint, while
considering the risk of such shortfalls.
Through a numerical illustration, we show
that the optimal allocation of resources is
sensitive to the decision maker’s level of
risk aversion.

Keywords: Distortion function, risk
measures, capability.

INTRODUCTION
In this paper, we review and illustrate

the concept of distorted risk measures in
order to analyze the risk of shortfalls in
military capabilities. The application of dis-
torted risk measures facilitates a method
for optimally allocating resources among
various military capabilities while taking
into account the risk of capability shortfalls.
However, an open and difficult question is
the selection of appropriate distortion func-
tions (and parameters), and their interpre-
tations, for a given risk scenario. In this
study, we propose numerical measures that
can be used to assist in distortion function
selection. Moreover, it is our aim to eluci-
date the usefulness of distorted risk mea-
sures, especially for scenarios involving
low-likelihood, catastrophic events.

Consider a military or national-level
decision maker who is faced with address-
ing shortfalls in military or homeland secu-
rity capability. However, due to budgetary
(or possibly other) constraints, only a sub-
set of shortfalls can be addressed. We as-
sume that input data from subject matter
experts, in the form of risks of capability
shortfalls, can be converted into appropri-
ate risk distributions using, for example,
techniques such as those outlined in
Clemen and Reilly (2001) for assessing con-
tinuous or discrete probabilities. While the
decision maker may trust and value the
opinions of subject matter experts, he or
she may desire to assign their own risk

priorities in the resource allocation process
to reflect additional information and/or
considerations not necessarily available to
the subject matter experts.

Distortion functions can be used to al-
ter standard risk measures for scenarios in
which low-likelihood, yet potentially cata-
strophic, occurrences in the tail of the risk
distribution are of interest but are often
suppressed by standard risk measures (e.g.,
expectation and conditional expectation).
In such cases, distortion functions serve the
purpose of shifting probability density to-
ward the region of the distribution that
corresponds to highly adverse outcomes,
thereby inflating the expectation risk mea-
sure. A wide variety of shaping effects and
degrees of effect are possible depending on
the distortion function selected and its pa-
rameters. The challenge for the decision
maker is to select appropriate distortion
functions to apply to risk distributions sug-
gested by his or her subordinates. Simi-
larly, because the degree of distortion ap-
plied via the parameter selection can be
(directly or indirectly) linked to the deci-
sion maker’s degree of risk aversion, the
selection of appropriate distortion function
parameters must also be considered. While
numerous distortion functions have been
introduced in the mathematical finance and
insurance literature (see McLeish and
Reesor 2003 and Wang 1996a), there is not a
universally accepted, formal methodology
for the selection of a distortion function or
its associated parameters.

As a relatively new and competing the-
ory for the pricing of risk (prospect theory
is the other), the properties of parametric
distortion functions have been examined in
the finance and insurance literature for the
past ten years. The seminal work on distor-
tion functions is due to Wang (1995), who
first proposed transforming the survivor
function of the risk using the proportional
hazard transform. Subsequently, Wang
(1996a) generalized the theory of distortion
to an entire class of functions used to cal-
culate insurance premiums. Wang et al.
(1997) provided an axiomatic theory of in-
surance premiums pricing. Distortion and
the axiomatic theory are closely tied to the
concept of risk measure coherency, outlined
by Artzner et al. (1997) and further devel-
oped by the same authors in Artzner et al.
(1999). Simply stated, a coherent risk mea-
sure is one that accurately portrays the way
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financial markets operate. Artzner et al. (1997)
establish four attributes that a coherent risk
measure must possess, the most important be-
ing that of subadditivity which means that the
aggregation of several risks should not increase
the overall risk. McLeish and Reesor (2003)
proved that a concave distortion function pro-
duces a coherent risk measure. Wirch and
Hardy (1999) made two general observations
regarding distortion parameters. First, they as-
sociate the parameters with a decision maker’s
risk aversion level toward risk in the far right
tail of the distribution. Second, they state that
the selection of distortion parameters is mostly
a “political” decision. To our knowledge, the
problem of selecting an appropriate distortion
function and its parameter(s) has not been for-
mally addressed in the risk analysis literature.

In this paper we seek to provide some
guidance for the selection of distortion func-
tions and their parameters when concerned
with inflating the right tail of a risk distribu-
tion. We are motivated by the potentially cata-
strophic losses that may result from military or
homeland security capability shortfalls. Specif-
ically, this concerns the representation of cata-
strophic risks that cannot, for operational or
political reasons, be disregarded despite their
low likelihood of occurrence. Throughout this
study, the focus of our attention is on the ex-
pected value of the risk; however, it is worth
noting that we may choose any other coherent
risk measure. Though it is admittedly difficult
to generalize the guidelines to an arbitrary sce-
nario, we attempt to provide a framework
within which the risk of military capability
shortfalls may be considered. For other contexts
(e.g., insurance or financial risk), it may be nec-
essary to vary the framework or even develop a
separate analysis.

We summarize and study the impact of
three of the most widely referenced distortion
functions on four parametric probability distri-
butions, specifically the exponential, Weibull,
triangular, and uniform distributions. When-
ever possible, we provide closed-form expres-
sions for the corresponding distorted risk mea-
sures. However, when such expressions are not
available, it is still possible to compute the mea-
sures by numerical methods. We propose two
simple measures of distortion effects, effective-

ness and efficiency, and by means of a simple
designed experiment, we argue that some dis-
tortions may be preferable to others, depending
on the risk distribution and the extent to which
distortion is desired. Finally, we illustrate the
means by which a decision maker’s risk aver-
sion levels may be incorporated into a resource
allocation problem using appropriate distortion
selection. The results of the study offer some
practical guidance for the application of distor-
tion functions to some specific risk scenarios.

The remainder of this paper is organized as
follows. In the next section, we define and re-
view the concept of distorted risk measures and
provide analytical results for the distorted ex-
pectation risk measure using a few parametric
probability distributions. In the Measuring Dis-
tortion Effects section we propose two distor-
tion performance measures and use a simple
designed experiment to help establish some
guidelines for distortion function selection. Re-
source Allocation and Distortion: An Illustra-
tion presents an illustrative example of a re-
source allocation problem which considers the
decision maker’s risk aversion levels while the
Conclusion provides a few closing remarks and
future research directions.

A REVIEW OF DISTORTION
FUNCTIONS

This section provides a brief overview of
distortion functions and coherent risk mea-
sures. Before presenting mathematical descrip-
tions, we first provide an intuitive motivation for
the use of distortions in a given risk scenario.

Concept of Distortion
Assume that risk is a nonnegative random

variable. If one is concerned only about the
probability that the random variable is above
(or below) some critical value, and not about
what happens above that value, then it is in-
structive to use a simple quantile risk measure
(i.e., the Value-at-Risk (VaR) measure in fi-
nance). In such a case, the distortion function is
simply a step function and the resulting dis-
torted risk measure has no probability in the
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tail of the original risk distribution. In many
cases, however, the tail of the distribution is of
interest because unacceptable, highly cata-
strophic losses can occur with low probability.
In these scenarios, it makes sense to amplify the
probability in the region of the original risk
distribution that corresponds to highly adverse
and unacceptable outcomes. In our context, a
military or national-level decision maker may
forego the opportunity to acquire certain mili-
tary capabilities. The risks involved in a short-
fall of military capability can be viewed as the
potential for loss of human life, loss of assets, or
other significant losses.

We assume that a nonnegative risk X is
defined on an appropriate probability space (�,
�, P) with cumulative distribution function
(c.d.f.) given by F(x) � P(X � x), x � 0 and
survivor function S(x) � P(X � x), x � 0. The
expectation risk measure is given by

E�X� � �
0

�

S� x�dx. (1)

The problem of selecting the risk distribution
for extreme events is a difficult question in its
own right. We do not specifically address dis-
tribution selection here; however, some guid-
ance is given by Lambert et al. (1994). The ob-
jective of a distortion function is to transform
the survivor function S(x) so that when a risk
measure is computed, the resulting distorted
measure more adequately reflects the possibility
and impact of extreme events. More formally, the
distortion of S is given by the composition func-
tion

g�S� x�� � � g � S�� x�, (2)

where g is a function satisfying (see Wirch and
Hardy 1999):

1. g : [0, 1]3 [0, 1] is monotonically increasing;
2. limu20 g(u) � 0; and
3. limu11 g(u) � 1.

The function Ŝ(x) � (g � S)(x) is again a survi-
vor function with the usual properties: its range
is [0, 1], it is non-increasing in x, and integrating
over the range of X gives the (distorted) expec-
tation. That is, under the distortion g, the ex-
pectation risk measure is

Ê�X� � �
0

�

Ŝ� x�dx � �
0

�

� g � S�� x�dx. (3)

The concept of distortion is closely tied to
the concept of risk measure coherency which
was formalized by Artzner et al. (1999). Sup-
pose X and Y are two nonnegative random
variables representing two risks and let � de-
note a risk measure. Then � is said to be a
coherent risk measure if it satisfies the follow-
ing four axioms:

1. Translation invariance: For all real � and r,
�(X � �r) � �(X) 	 �

2. Subadditivity: �(X � Y) � �(X) � �(Y)
3. Positive homogeneity: For all � � 0, �(�X) �

��(X)
4. Monotonicity: If X � Y, then �(X) � �(Y)

McLeish and Reesor (2003) have shown that, if
g is a concave function, then the resulting dis-
torted risk measure will satisfy the four axioms
of coherency. This fact will be useful in deter-
mining appropriate distortion parameter val-
ues since we seek a resulting risk measure that
is coherent. Next, we review some of the most
commonly applied distortions.

Common Distortion Functions
The distortion functions most frequently

encountered in the literature are the gamma-
beta distortion and its variants which are dis-
cussed extensively in McLeish and Reesor
(2003). This family of distortion functions con-
sists of the gamma-beta, beta, proportional haz-
ard (PH), dual power (DP), gamma, and expo-
nential (EX) distortions. Among these six, the
single-parameter distortions (PH, DP, and EX)
will be considered for three primary reasons: i)
the effects of an individual parameter may be
observed more easily; ii) the distorted expecta-
tion risk measure can be computed analytically
in many cases, and numerically in others; and
iii) it is desirable to minimize the number of
parameters that need to be estimated.

The gamma-beta distortion is defined as
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gGB�S� x�� � �
0

S� x�

Kta	1�1 � t�b	1exp�	t/c�dt,

(4)

where

K	1 � �
0

1

ta	1�1 � t�b	1exp�	t/c�dt.

This distortion serves as the basis for other
distortions when we assume certain values for
the parameters a, b, and c. It is worth mention-
ing here that a, b, and c may assume any non-
negative values; however, McLeish and Reesor
(2003) have shown that 0 � a � 1, b � 1, and c �
0 are sufficient to ensure concavity of the dis-
tortion function, and thus coherency of the as-
sociated risk measure.

By setting b � 1 and allowing c 3 � in (4),
we obtain the proportional hazard (PH) distor-
tion given by

� gPH � S�� x� � Sa� x�, 0 � a � 1. (5)

The attractive feature of (5) is its ease of com-
putation. By setting a � 1 and allowing c3 � in
(4), we arrive at the dual power (DP) distortion
given by

� gDP � S�� x� � 1 � �1 � S� x��b , b � 1. (6)

As noted by Wirch and Hardy (1999), this dis-
tortion has perhaps the most lucid interpreta-
tion. For an integer value of b, the expectation
risk measure corresponds to the expected value
of the maximum of a sample of b observations
of X. Finally, the exponential (EX) distortion
depends only on the single parameter c and is
given by

� gEX � S�� x� �
1 � e	S� x�/c

1 � e	1/c , c � 0. (7)

This distortion corresponds to an exponential
random variable restricted to the interval [0, 1].

The question with which we concern our-
selves in this study is, “Why may one of the
distortion functions be preferable to the others
in a given context?” The answer to this question
is that it depends upon the risk scenario under
consideration. In Figure 1, each of the single-

parameter distortions is applied to an exponen-
tially distributed risk X with rate parameter � �
3.5. The gamma-beta distortion is also included
since it uses all three parameters a, b, and c. The
undistorted exponential density is depicted by
the solid line. Among the single-parameter dis-
tortions, the proportional hazard (PH) distor-
tion has the greatest effect on the right tail of
the distribution, thickening it considerably. The
dual power (DP) distortion, while inflating the
right tail slightly, has a much more noticeable
effect on the left side of the distribution, shift-
ing the mode away from zero. The exponential
(EX) distortion can best be described as a com-
bination of the effects of the PH and DP. In
general, these effects are consistent for the other
distributions considered in this paper.

From this plot, we can clearly observe why
a particular distortion function might be pre-
ferred over another. One may be more con-
cerned with inflating the right tail rather than
altering the left-hand side of the distribution. In
what follows, we compute the distorted expec-
tation risk measure using the three single-param-
eter distortion functions and four parametric
probability distributions. These will be used to
study the effects of distortions and their parame-
ters in the Measuring Distortion Effects section.

Computing Distorted Measures
In order to elucidate the effects of distor-

tion, we now apply the single-parameter dis-
tortions to a set of parametric probability dis-

Figure 1. Distorted density when X 
 Exp(3.5)
with distortion parameters a � 0.6, b � 1.5, and c �
0.8 for GB (solid is no distortion, – – – GB, � � � PH,
– � – � DP, – � � – EX).
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tributions. The four distributions we consider
are: exponential with rate parameter � (denoted
Exp(�)); Weibull with shape parameter � and
scale parameter 	 (denoted Weib(�, 	)); trian-
gular on the closed interval [	1, 	2] with mode
m (denoted Tria(	1, 	2, m)); and continuous uni-
form on the closed interval [	1, 	2] (denoted
U(	1, 	2)). We select these four distributions
because they are representative of risk distribu-
tions from a variety of disciplines including
actuarial science, financial and insurance risk,
as well as reliability. Moreover, they span a
range of distribution shapes on both bounded
and unbounded intervals. Finally, they have a
relatively small number of parameters that may
be easily estimated using information that is
likely to be available from subject matter ex-
perts.

For each combination of distribution and
distortion, we have attempted to summarize
closed-form expressions for the distorted ex-
pectation risk measure given by equation (3). In
some cases, explicit expressions are attainable,
while others remain as definite or indefinite
integrals that can be evaluated numerically us-
ing standard methods. These results are re-
corded in Tables 1 through 4.

First suppose the risk X is exponentially
distributed with rate parameter � � 0. In such
case, the survivor function is given by

S� x� � �e	�x if x � 0, � 
 0
0 otherwise (8)

The undistorted risk measure is �0 � E(X) �
�	1. Table 1 provides a summary of the dis-
torted survivor function and the distorted risk
measure computed by equation (3).

Next, suppose the risk follows a Weibull
distribution with parameters � and 	. In such
case, the survivor function is

S� x� � �exp��	x/	��� if x � 0, � 
 0, 	 
 0
0 otherwise ,

(9)

and the undistorted expectation is �0 � (	/
�)�(�	1), where �(�) is the gamma function.
Similarly, the distorted risk measures are sum-
marized in Table 2.

The third distribution we considered was
the triangular distribution on [	1, 	2] with mode
value m. The survivor function is given by

S� x� � �
1 if x � 	1

1 �
�x � 	1�

2

�	2 � 	1��m � 	1�
if 	1 � x � m

�	2 � x�2

�	2 � 	1��	2 � m�
if m � x � 	2

0 if x 
 	2

,

(10)

where 	1 � 	2, 	1 � x � 	2, and 	1 � m � 	2. The
undistorted expectation is �0 � (	1 � 	2 �
m)/3.

Finally, when the risk X is distributed U(	1,
	2), the survivor function is given by

S� x� � �1 �
x � 	1

	2 � 	1
if 	1 � x � 	2

0 otherwise
, (11)

and the undistorted expectation is �0 � (	1 �
	2)/2. Table 4 summarizes the distorted survi-
vor function and risk measure.

It is important to note that, for the intractable
results in Tables 1–3, the distorted risk measure
may be approximated using numerical quadra-
ture routines widely available in standard com-
puting environments. In the next section, we pro-
pose measures that may be used to assess the
effect of distortion and present a designed exper-
iment to assist in establishing guidelines for ap-
propriate distortion function selection.

MEASURING DISTORTION EFFECTS
In this section, we propose measures of

effectiveness and efficiency to assist in selecting

Table 1. Distorted risk measures when X 

Exp(�)

Distortion
function

Ŝ(x) Ê[X]

gPH e	�ax (�a)	1

gDP 1 	 (1 	 e	�x)b �0
�
1 � �1 � e	�x�b� dx

gEX
1 � exp�	e	�x/c�

1 � exp�	1/c�
�0

�
1 � exp�	e	�x/c�

1 � exp�	1/c�
dx
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distortion functions and their associated pa-
rameters. However, we first introduce a mea-
sure of the magnitude of probability density
displacement that results from the application

of a distortion function. This measure of den-
sity translation uses the median of the risk dis-
tribution, namely that point at which the undis-
torted distribution is partitioned with equal

Table 2. Distorted risk measures when X 
 Weib(�, 	)

Distortion function Ŝ(x) Ê[X]

gPH ea(	x/	)�
	

���a
��1

��
gDP 1 	 (1 	 e(	x/	)�

)b �0
�
1 � �1 � e�	x/	��

�b� dx

gEX 1 � exp�	e�	x/	��/c�
1 � exp�	1/c�

�0
�

1 � exp�	e�	x/	��/c�
1 � exp�	1/c�

dx

Table 3. Distorted risk measures when X 
 Tria(	1, 	2, m)

Distortion
function

Ŝ(x) Ê[X]

gPH �1 �
�x � 	1�

2

�	2 � 	1��m � 	1�
�a

, 	1 � x � m �
	1

m �1 �
�x � 	1�

2

�	2 � 	1��m � 	1�
�a

dx

� �	2 � x�2

�	2 � 	1��	2 � m�
�a

, m � x � 	2



�	2 � m�a�1

�2a 
 1��	2 � 	1�
a

gDP 1 � � �x � 	1�
2

�	2 � 	1��m � 	1�
�b

, 	1 � x � m m � 	1 �
�m � 	1�

b�1

�	2 � 	1�
b�2b 
 1�




1 � �1 �
�	2 � x�2

�	2 � 	1��	2 � m��
b

, m � x � 	2 �m
	2 �1 � �1 �

�	2 � x�2

�	2 � 	1��	2 � m��
b	 dx

gEX 1 � exp�	1
c



�x � 	1�

2

c�	2 � 	1��m � 	1�
�

1 � exp�	1/c�
, 	1 � x � m �

	1

m

1 � exp�	1
c



�x � 	1�

2

c�	2 � 	1��m � 	1�
�

1 � exp�	1/c�
dx

1 � exp� 	�	2 � x�2

c�	2 � 	1��	2 � m��
1 � exp�	1/c�

, m � x � 	2 
�m
�2

1 � exp� 	�	2 � x�2

c�	2 � 	1��	2 � m��
1 � exp�	1/c�

dx

Table 4. Distorted risk measures when X 
 U(	1, 	2)

Distortion function Ŝ(x) Ê[X]

gPH �1 �
x � 	1

	2 � 	1
�a

�	2 � 	1�� 1
a 
 1�

gDP

1 � � x � 	1

	2 � 	1
�b

�	2 � 	1�� b
b 
 1�

gEX

1 � exp�	�1 �
x � 	1

	2 � 	1
�/c�

1 � exp�	1/c�

�	2 � 	1��1 � c 
 ce	1/c

1 � e	1/c �
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density on either side. After distorting the orig-
inal risk distribution, the magnitude of density
translated from the left of the undistorted me-
dian to the right of the median using distortion
function g is computed as

Rg �
� g � S����

S���
, (12)

where � � inf{x � 0 : S(x) � 0.5} denotes the
median of the undistorted risk distribution, S is
the undistorted survivor function, and (g � S) is
the distorted survivor function. Since the dis-
tortion functions used in this research all shift
density to the right, we see that

1 � Rg � 2,

since by this ratio measurement all of the den-
sity to the left of the median can theoretically be
shifted to the right of the median. However, Rg

does not measure how “far” this density has
been shifted—it only reflects the fact that it has
been translated beyond the undistorted me-
dian. Conversely, if Rg � 1, this implies that no
distortion has been applied whatsoever.

Effectiveness and Efficiency
The primary risk measure considered in

this work is the expectation of the risk random
variable. Recall that expectation has a draw-
back in that low-frequency risk values tend to
be “dampened out” by the values with the
greatest relative frequency. However, distor-
tion functions can provide the decision maker
with the ability to control expectation to pre-
dictable degrees. In choosing a distortion func-
tion for a specified risk distribution, the deci-
sion maker would like to know how effective
each candidate distortion function/parameter
combination is in inflating the expectation risk
measure. After applying distortion g and com-
puting the distorted expectation �g � Ê(X), the
measures can be compared to determine which
distortion has the greatest effect on that risk
distribution’s mean. To develop the idea fur-
ther, we define the following measure.

Definition 1. The effectiveness of a distortion
function is defined as the ratio,

K � �g/�0 , (13)

where �g is the distorted risk measure obtained
by applying distortion g, and �0 is the undistorted
risk measure.

This ratio can, for example, be used to di-
rectly compare a unique distortion function/pa-
rameter combination over different distributions,
measuring that combinations’s effectiveness in
changing each distribution’s expectation as a per-
centage increase. Because �g � �0 we see that K �
1, and whenever K � 1, the risk distribution is
undistorted. Similarly, two different distortion
function/parameter combinations applied to two
dissimilar risk distributions having equal K-val-
ues are deemed to be equally effective in distort-
ing (increasing) the expectation risk measure.

Through numerical experimentation, we
have observed clear contrasts in the way different
distortion function/parameter pairs shift density.
As applied to a single risk distribution, one com-
bination may require significant density shift be-
fore its K-value matches that of another pairing
which has a greater effect on the distribution’s
tail. Prototypical examples are the PH and DP
distortions. The PH distortion accumulates den-
sity in the right tail while the DP accumulates it
closer to the mode, so the PH generally has a
greater effect on expectation. A measure to reflect
the magnitude of density shift has already been
established, namely Rg. For this reason, it seems
beneficial to combine the two measures K and Rg

into a single measure of efficiency.
Definition 2. The efficiency of a distortion

function g is defined as the ratio of the normalized
change in the risk measure to the normalized change
in density given by

E � K/Rg . (14)

The measure E should not be confused with the
concept of statistical efficiency related to pa-
rameter estimation. Intuitively, if a distortion
function/parameter combination has a large ef-
fect on the expectation risk measure while shift-
ing a relatively small magnitude of density,
then that pairing is highly efficient when ap-
plied to the given distribution.

One might ask, “Why would a decision
maker care about the magnitude of density be-
ing shifted? Why isn’t the effectiveness of the
distortion function/parameter combination all
he or she needs to know in making a selection?”
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Note that without the efficiency measure, there
would be no need to distinguish between two
pairings with identical effectiveness; the deci-
sion maker might conclude that one is just as
good as the other, even though the underlying
distribution is being changed in an entirely dif-
ferent manner depending on the choice. As an
example, consider Figure 2 which shows an
undistorted Weib(2,2) distribution along with
its PH (a � 0.2) and DP (b � 31) distortions.
Both of the distorted distributions have K �
2.24, but the densities are hardly similar.

Furthermore, the decision maker should
care a great deal about the magnitude of shifted
density required to achieve a desired increase
in the resulting risk measure. More specifically,
the decision maker has approximated risk dis-
tributions using the inputs of subject matters
experts who presumably possess expertise the
decision maker is lacking. For every unit in-
crease of the measure Rg, the decision maker is
taking an additional “step” away from the rec-
ommendations of his or her advisors (and the
assumed true distributions). To illustrate this
point, consider again Figure 2 in which the
distortions have transformed the original
Weibull risk distribution into two radically dif-
ferent ones. Thus, it seems likely that the deci-
sion maker would prefer one of two possible
courses of action in choosing a distortion func-
tion/parameter combination:

1. Achieve the maximum increase in the expec-
tation while affecting the original risk distri-
bution by (no more than) a specified
amount; or

2. achieve a specified increase in expectation
while altering the original risk distribution
as little as possible.

In either case, efficiency is the measure which
provides the appropriate answer.

In order to investigate the impact of the
distortion parameters on these measures, we
carried out a 3k-factorial designed experiment.
For this purpose, we arbitrarily selected the
following distribution parameters for each of
the four distributions noted earlier: Exp(3.5),
Weib(2,2), Tria(1,7,4), and U(1,7). The factorial
design was used to study the effects of each
parameter (a, b, and c) in the gamma-beta dis-
tortion, and within this factorial design, each of
the involved parameters was required to have
relatively equal power over the Rg measure so
that the interaction effects could be analyzed in
a “fair” manner. Since we chose a face-centered
cube design, three equally-spaced values were
used for each parameter. Table 5 summarizes
the selected distortion parameter values (or
treatments). Recall that when a � 1, b � 1, and
c 3 �, no distortion is applied. We note that
distortion is inversely proportional to the pa-
rameters a and c while it is proportional to the
parameter b.

Table 6 records the efficiency and effective-
ness measures for the risk distributions and
single-parameter distortions studied in this pa-
per. In general, as the amount of distortion is
increased, the efficiency is decreased. There are
three exceptions to the general rule, however,
and the efficiency measures for these three
cases are highlighted in bold face type. Specif-

Figure 2. Distorted densities when X 
 Weib(2,2)
with distortion parameters a � 0.2 and b � 31 (solid
is no distortion, � � � PH, – � – � DP).

Table 5. Selected distortion parameter treatments

Distortion
(Parameter)

Selected
Values

Rg

(% density shift)

Proportional
Hazard (a)

High 0.90 1.07 (7%)
Mid 0.75 1.19 (19%)
Low 0.60 1.32 (32%)

Dual Power (b) Low 1.10 1.07 (7%)
Mid 1.30 1.19 (19%)
High 1.50 1.29 (29%)

Exponential (c) High 3.60 1.07 (7%)
Mid 2.20 1.11 (11%)
Low 0.80 1.30 (30%)
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ically, in the case of the exponential distribu-
tion, efficiency increases with distortion when
using the PH and EX distortion functions. For
the PH distortion applied to the Weibull distri-
bution, efficiency at first decreases as distortion
is increased, then begins to increase again. A
brief investigation to verify this result showed
that the least efficiency occurs at about a � 0.72.

Using Table 6, some general rules (within
the limits of this study) can be established for
selecting a distortion function to apply to a
distribution. Recall that a decision maker
would likely be interested in either (i) achieving
the largest possible increase in the mean given
a specified maximum shift in density, or (ii)
shifting the density by the smallest amount re-
quired to achieve a specified increase in expec-
tation. Using Table 6, some answers may be
available when objective (i) is of primary im-
portance. Table 7 was created from Table 6 by
comparing efficiency across categorized values
of Rg. For example, considering the triangular
distribution in Table 6, the low-distortion effi-
ciency values are 0.9602 for the PH (a � 0.9),
0.9614 for the DP (b � 1.1), and 0.9579 for the

EX (c � 3.6). Since the DP value is the highest,
this was entered into the appropriate cell of
Table 7. Thus in the case of objective (i) when
assuming a triangular risk distribution, the DP
distortion is the most efficient (although the
values are relatively close in this case).

In examining Table 7, note once again that
the difference in the Rg values between the PH
and DP distortions (Rg � 1.19) and the EX
distortion (Rg � 1.11) at the “moderate” distor-
tion level could be significant in the final selec-
tion of a distortion function at that level. In
addition, note that decision maker objective (ii)

Table 6. Effectiveness and efficiency measures for all distortion/distribution pairings

Distortion 3
Measure 2

PH DP EX

a � 0.9 a � 0.75 a � 0.6 b � 1.1 b � 1.3 b � 1.5 c � 3.6 c � 2.2 c � 0.8

Exp(3.5), �0 � 0.285714
�g 0.3175 0.3810 0.4762 0.3036 0.3363 0.3658 0.3058 0.3189 0.3791
Rg 1.0718 1.1892 1.3193 1.0670 1.1877 1.2929 1.0693 1.1131 1.3027
K 1.1111 1.3333 1.6667 1.0625 1.1772 1.2803 1.0704 1.1161 1.3270
K/Rg 1.0367 1.1212 1.2633 0.9958 0.9911 0.9903 1.0010 1.0027 1.0186

Weib(2,2), �0 � 1.772454
�g 1.8683 2.0467 2.2882 1.8448 1.9713 2.0788 1.8449 1.8911 2.0971
Rg 1.0719 1.1895 1.3199 1.0670 1.1879 1.2932 1.0694 1.1133 1.3032
K 1.0541 1.1547 1.2910 1.0408 1.1122 1.1729 1.0408 1.0669 1.1831
K/Rg 0.9834 0.9707 0.9781 0.9755 0.9362 0.9069 0.9733 0.9584 0.9079

Tria(1,7,4), �0 � 4.000
�g 4.1163 4.3218 4.5777 4.1033 4.2793 4.4246 4.0971 4.1586 4.4275
Rg 1.0718 1.1892 1.3193 1.0670 1.1877 1.2929 1.0693 1.1131 1.3027
K 1.0291 1.0804 1.1444 1.0258 1.0698 1.1062 1.0243 1.0396 1.1069
K/Rg 0.9602 0.9086 0.8675 0.9614 0.9007 0.8556 0.9579 0.9340 0.8497

U(1,7), �0 � 4.000
�g 4.1579 4.4285 4.7500 4.1428 4.3913 4.6000 4.1387 4.2265 4.6093
Rg 1.0718 1.1892 1.3193 1.0670 1.1877 1.2929 1.0693 1.1131 1.3027
K 1.0395 1.1071 1.1875 1.0357 1.0978 1.1500 1.0347 1.0566 1.1523
K/Rg 0.9699 0.9310 0.9001 0.9707 0.9243 0.8895 0.9676 0.9492 0.8846

Table 7. Suggested distortions for selected
distributions (via efficiency)

Risk
Distribution

Low
Distortion
(0–10%)

Moderate
Distortion
(11–20%)

Heavy
Distortion
(21–30%)

Exp(3.5) PH PH PH
Weibull(2,2) PH PH PH
Tria(1,7,4) DP EX PH
U(1,7) DP EX PH
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could be answered just as easily as objective (i),
but the original response surface study which
facilitated the distortion parameter choices would
have had to fix the distorted expectations rather
than the amount of density shift being applied.

Some Distortion Selection
Guidelines

In this subsection, we summarize some
conclusions that can be drawn from our simple
designed experiment regarding the selection of
distortion functions and their associated pa-
rameters. It is important to note that these re-
sults are not generalizable to all risk scenarios,
but illustrate the means by which one might
make such selections for the distributions we
have considered here. More specifically, our
conclusions are valid especially when the
highly adverse outcomes correspond to the
right tail of the distribution (i.e., when the de-
cision maker desires to shift probability density
to the right).

1. When an exponential or Weibull distribution
is appropriate for the risk scenario, the PH
distortion is drastically more efficient than
the DP or EX. In the case of the exponential
distribution, the PH also leaves the mode in
place at zero, while other distortions “pull”
the mode away from zero.

2. For the triangular and uniform distributions,
no distortion appears to be as totally domi-
nant (in efficiency) as the PH is for the ex-
ponential and Weibull. For each of these
bounded distributions, the DP distortion is
the most efficient in cases where only a small
amount of distortion is required; question-
ably, the EX is more efficient in the vicinity
of Rg � 1.15; and the PH is most efficient
when larger amounts of distortion are re-
quired.

3. If higher moments are desired from the dis-
torted distribution (e.g., the variance may
well be of concern), then the DP and EX
distortions may be preferred over the PH.
Particularly in the case of the Weibull and
triangular distributions, the DP accumulates
density near the mean, likely reducing the
impact on variance.

4. The parameter b of the DP distortion has a
meaningful interpretation. In particular, it
corresponds to the expected value of the
worst outcome when b samples are taken
from the random variable (Wirch and Hardy
1999). If the decision maker appreciates this
interpretability but wishes to use either the
PH or EX distortion, a value of b can be
obtained which results in a DP match in �g

to the specified a or c parameter. In this
manner, the interpretability can be “loaned”
to the PH and EX distortions through a sin-
gle extra step.

In the next section, we illustrate the means by
which distorted risk measures may be em-
ployed to incorporate the risk of capability
shortfalls in a resource allocation problem.

RESOURCE ALLOCATION AND
DISTORTION: AN ILLUSTRATION

Suppose there are nine distinct areas of
military (specifically fighter aircraft) capability
that might be of interest to a decision maker.
Table 8 provides the descriptions of such no-
tional areas.

A shortfall in capability area i creates a risk
(say Xi) with undistorted risk measure E(Xi)
and distorted risk measure Ê(Xi), i � 1, 2, . . ., 9.
However, to address shortfalls in capability
(i.e., to mitigate risk), six distinct risk-mitigat-
ing systems may be acquired as summarized in
Table 9.

Let mi, j denote the shortfall mitigation to
area i (i � 1, 2, . . ., 9) obtained from acquisition
of system j ( j � 1, 2, . . ., 6). For instance, if
mi, j � 0.50, then the purchase of system j re-
duces the shortfall in capability area i by 50%.
We initially assume that the decision maker can
choose to acquire some or all of a risk-mitigat-
ing system. Let xj represent the proportion of
system j to be acquired so that 0 � xj � 1, j � 1,
2, . . ., 6 (i.e., partial investments are permissible
without loss of contribution). Next, define cj as
the cost of acquiring one complete unit of sys-
tem j. The decision maker’s objective is to max-
imize the risk mitigation by strategically choos-
ing the proportion of various systems to
purchase, subject to a fixed budget B. The op-
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timal strategy may be determined by solving
the linear program (LP),

max 

i�1

9 

j�1

6

Ê�Xi�mi, jxj (15a)

s.t. 

j�1

6

cjxj � B (15b)

0 � xj � 1, j � 1,2, . . . , 6. (15c)

An intuitive explanation of the LP is as follows.
Our decision maker would like to selectively
apply distortion to the various risk distribu-
tions in order to better reflect his or her own
risk priorities. For this reason, in (15a), we
weight each mi, j by the distorted expectation
risk measure, Ê(Xi), i � 1, 2, . . ., 9. If we instead
use the undistorted values, E(Xi), i � 1, 2, . . ., 9,
this corresponds to solving the problem using
only the information provided by subject mat-
ter experts based solely on the unadjusted ex-
pected risk (i.e., ignoring the decision maker’s
concerns about catastrophic loss). If we set

Ê(Xi) � 1 for each i in (15a), this is equivalent to
ignoring the risks altogether.

With regard to the budgetary constraint
(15b), we have assumed in this example that the
cost of acquiring system j is linear in the pro-
portion of investment in system j. Of course, it
is possible that the costs may differ if funding
of only part of a risk-mitigating system is se-
lected. A number of approaches in the literature
are available to model various operational set-
tings if other conditions apply (see Martello
and Toth 1990 among others). Nonetheless, we
solve the LP under this assumption for the pur-
pose of illustrating the methodology. It is worth
noting that Woodward (2004), used an integer
programming approach and a distorted expec-
tation risk measure, but uniformly applied the
DP distortion function with a constant param-
eter b across all capability areas. Our approach
permits the decision maker to vary the type and
level of distortion in each area while also allow-
ing for the possibility of partial investments
when appropriate.

We now illustrate solving the LP in a spe-
cific problem instance. We assume the budget is
fixed at B � 25 monetary units. Suppose the
decision maker is least risk averse to cata-
strophic loss in capability areas 8 and 9, some-
what risk averse to catastrophic loss in areas 4,
6, and 7, and most risk averse to catastrophic
loss in areas 1, 2, 3, and 5. The weights summa-
rized in Table 10 reflect the decision maker’s
degree of risk aversion in each area. In partic-
ular, a higher weight represents greater risk
aversion. The nine distributions, assumed to
originate from the inputs of nine teams of sub-
ject matter experts, are also included. Specifi-

Table 8. Notional aircraft capability areas and descriptions

Area (i) Name Description

1 Reconnaissance Locate specific areas and record information about those areas
2 Range and Payload Combat radius, weapon types and quantities
3 Communications Ability to transmit and receive messages
4 Passive Sensors Detection ability without broadcasting a radio frequency (RF) signal
5 Offensive Firepower Ability to employ armament against ground and airborne targets
6 Self-Defense Ability to defend against infrared- and RF-guided threats
7 Life Support Ability to protect the pilot and provide for human needs (e.g., oxygen)
8 Networking Ability of the aircraft to integrate into the battle space
9 Availability The proportion of time the aircraft is available for its missions

Table 9. Potential risk-mitigating systems

System (j) Description

1 Color cockpit display
2 Enhanced mission computer
3 New air-to-ground weapons system
4 New helmet-mounted targeting system
5 Enhanced digital radar system
6 Improved ground support equipment
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cally, these distributions correspond to the risk
associated with shortfalls in the respective ca-
pability areas summarized in Table 8.

We assume the decision maker would like
to impose one of two priorities: (i) obtain the
greatest possible increase in the expectation
risk measure given a specified shift in density,
or (ii) minimize the magnitude of density
shifted to achieve a specified increase in the
expectation. While either priority may be con-
sidered, we will proceed with this example on
the assumption that the decision maker prefers
objective (i), and that the degree of risk aver-
sion (i.e, the weights in Table 10) assigned to an
area corresponds to a specific shift in density
Rg. For instance, for Area 1 (reconnaissance ca-
pability), the risk distribution is assumed to be
Weib(3.5,3.3), and the decision maker has cho-
sen, based on available information and projec-
tions, to shift 20% of the density beyond the
median, or Rg � 1.20. At this level, using this
distribution, the PH distortion is the most
efficient. Setting a � 0.735 results in a dis-

torted expectation of �g � 3.2422. We con-
tinue in this fashion for all risk distributions,
applying distortions based on the recommen-
dations of Table 7. Table 11 summarizes the
results of selectively distorting as per the pre-
specified preferences of the decision maker.
The column entitled, “Distortion” is the se-
lected distortion function and its associated
parameter value.

Table 12 summarizes the impact of each
system on mitigating capability shortfalls. The
table elements correspond to the percent short-
fall mitigation that each potential acquisition
addresses in all nine areas. For example, system
2 mitigates the risk of a shortfall in area 1 by
19%.

The last row of Table 12 is the cost associ-
ated with the purchase of a complete system.

Assuming a budget of 25 units, Table 13
summarizes the optimal solution to the re-
source allocation problem when formulated as
an LP. The “Unweighted” solution assumes
that we do not weight the mitigation terms by a
risk measure at all. The rows entitled,
“Weighted, Undistorted” and “Weighted, Dis-
torted” provide the solutions using undistorted
and distorted risk measures, respectively. In
Table 13, an entry of 1.0 represents a recom-
mendation to purchase a complete system, a
decimal represents a partial purchase, and 0.0
represents no purchase.

The different optimal solutions for the
three scenarios agree with intuition. In particu-
lar, we note that systems 1 and 2 are consis-
tently chosen because they significantly miti-
gate the risk of shortfalls in capability areas 2–5
which the decision maker has deemed to be

Table 10. Notional data for illustrative example

Area (i) Weight Distribution �0 � E(Xi)

1 20 Weib(3.5,3.3) 2.9692
2 30 Tria(0,4.67,3.2) 2.6233
3 19 U(0,4) 2.0000
4 13 Tria(0,4,2) 2.0000
5 46 Weib(2.04,1.74) 1.5416
6 6 Weib(3.08,2.84) 2.5391
7 6 U(1,3) 2.0000
8 0 Exp(0.45) 2.2222
9 0 Tria(0,1.875,0.5) 0.7917

Table 11. Selection of distortion functions and parameters

Area (i) Distribution Rg Distortion �g � Ê(Xi)

1 Weib(3.5,3.3) 1.20 PH, a � 0.735 3.2422
2 Tria(0,4.67,3.2) 1.30 PH, a � 0.062 3.0197
3 U(0,4) 1.19 EX, c � 1.300 2.2539
4 Tria(0,4,2) 1.13 EX, c � 1.900 2.1223
5 Weib(2.04,1.74) 1.46 PH, a � 0.450 2.2801
6 Weib(3.08,2.84) 1.06 PH, a � 0.915 2.6134
7 U(1,3) 1.06 DP, b � 1.090 2.0431
8 Exp(0.45) 1.00 N/A 2.2222
9 Tria(0,1.875,0.5) 1.00 N/A 0.7917
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relatively important areas. On the contrary, sys-
tems 5 and 6 are seldom chosen due to the fact
that they do not impact the critical areas (2–5)
in a significant way. System 3 becomes an im-
portant asset once the decision maker’s prefer-
ences are included because it has the potential
to mitigate risks in a shortfall of capability area
5, the area in which the decision maker is most
risk averse.

For the sake of comparison, we next con-
sider a binary integer programming (BIP) for-
mulation of the problem where constraint (15c)
is replaced by the constraint xj � {0, 1}, j � 1, 2,
. . ., 6. Table 14 summarizes the optimal solu-
tions in this case.

As expected, when partial investments
are prohibited, the optimal solutions differ
(see for example Taha 1975). However, we
note that in this illustrative binary IP formu-

lation, systems 5 and 6 remain unimportant in
mitigating the risk of capability shortfalls
while system 1 is always selected when the
risk measures are included. When choosing
between the LP, BIP or a mixed model, of
course, the analyst will select the model that
most accurately represents the decision envi-
ronment. In the conclusion, we provide some
final remarks and possible directions for fu-
ture inquiry.

CONCLUSIONS
The properties of distortion functions have

been well documented in the current risk anal-
ysis literature. However, the appropriate selec-
tion of a distortion function and its correspond-
ing parameters is a problem that has not

Table 12. Percent shortfall mitigation

Area (i) mi,1 mi,2 mi,3 mi,4 mi,5 mi,6

1 0.00 0.19 0.00 0.26 0.26 0.00
2 0.46 0.21 0.00 0.12 0.00 0.00
3 0.34 0.19 0.00 0.05 0.00 0.23
4 0.14 0.42 0.00 0.36 0.00 0.05
5 0.10 0.21 0.92 0.30 0.00 0.10
6 0.00 0.00 0.54 0.00 0.00 0.11
7 0.16 0.00 0.00 0.00 0.25 0.00
8 0.19 0.00 0.00 0.00 0.31 0.48
9 0.00 0.00 0.00 0.00 0.33 0.36

cj 7.0 7.0 10.0 8.0 8.0 9.0

Table 13. Optimal solutions under various scenarios (LP formulation)

Weighting Scheme x1 x2 x3 x4 x5 x6

Unweighted 1.000 1.000 0.200 0.000 0.000 1.000
Weighted, Undistorted 1.000 1.000 0.300 1.000 0.000 0.000
Weighted, Distorted 1.000 1.000 1.000 0.125 0.000 0.000

Table 14. Optimal solutions under various scenarios (BIP formulation)

Weighting Scheme x1 x2 x3 x4 x5 x6

Unweighted 1.000 0.000 1.000 0.000 1.000 0.000
Weighted, Undistorted 1.000 0.000 1.000 1.000 0.000 0.000
Weighted, Distorted 1.000 0.000 1.000 1.000 0.000 0.000
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received much attention. This study takes an
initial step toward addressing this important
issue. Our primary objective was to provide
some practical recommendations for risk ana-
lysts who seek to use distortion functions to
adjust the expectation risk measure to better
account for low-likelihood yet potentially cat-
astrophic events. For our purposes, we con-
sidered risks that may arise from shortfalls in
military or homeland security capabilities
which may result in obvious detrimental out-
comes.

We have provided a procedure, via analyt-
ical and empirical methods, for the selection of
distortion functions and their parameters on a
set of parametric risk distributions. The use of
distortion functions provides a tractable and
documentable procedure to investigate the
shifting of risk in the face of catastrophic
events. Two new measures, efficiency and ef-
fectiveness, were proposed to distinguish the
effects of different distortions and to make ba-
sic recommendations regarding the appropri-
ateness of certain distortion functions and pa-
rameters using specific risk distributions.
Additionally, a linear programming model was
formulated to illustrate the means by which the
distorted expectation risk measure can be used
to influence the acquisitions plan of a risk-
averse decision maker.

There are some obvious shortcomings in
this work which are noted here. First, the selec-
tion guidelines that we provide are limited to
the risk distributions considered in this study.
Of course, it will be important to consider a
wider range of distributions and to study the
interaction between distribution and distortion
function parameters. Moreover, we considered
only the expectation risk measure, and it may
prove useful to consider other coherent mea-
sures in the future. Another limitation stems
from the use of the quantity Rg which measures
only the magnitude of density shifted beyond
the median of the undistorted risk distribution.
This measure really does not tell us how “far”
beyond the median the density has been trans-
lated. Other measures should be considered, as
should a more comprehensive risk measure
such as those described in Sarin and Weber
(1993). It may also be instructive to investigate
the relationship between the skewness of the

risk distribution (perhaps using Pearson’s
skewness coefficient) and either the percent
change in expectation or Rg. There appears to
exist some correlation between Pearson’s coef-
ficient and the normalized mean. That is, the
mean of some risk distributions (the exponen-
tial is one case) is more sensitive to the appli-
cation of distortion than others. Finally, further
research regarding the effects of distortion on
variance may significantly impact the selection
of distortion functions for specific risk scenar-
ios.
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ABSTRACT

We plan a long-term project sched-
ule for which the total budget de-
pends upon the year the project

finishes. Each task in the project can begin
only when all its predecessor tasks have
been completed, and each task has a range
of feasible durations with a month-by-
month cost profile for each duration. A task
start can be delayed, but once started for
some chosen duration, a task cannot be
interrupted. Each task suffers some risk of
delay and changed cost. Ignoring budget
constraints, we use Monte Carlo simulation
of the duration of each task in the project to
infer the probability distribution of the
project completion time. We then optimize
a deterministic project schedule following
budget guidance. Finally, we successively
reschedule as the project progresses, simu-
lating annual review of active tasks, and
possibly delaying each active task’s dura-
tion and changing its monthly costs for its
forecast duration. We do not require an
independence assumption, so we can ac-
commodate learning effects from com-
pleted tasks. U.S. Army Future Combat
Systems (FCS) is our motivating applica-
tion. FCS is a complex of information tech-
nologies, sensors, and command systems
expected to require more than a decade and
$16 billion to develop. The U.S. General
Accounting Office finds FCS at significant
risk of cost and schedule growth, and sug-
gests two alternatives to a baseline Army
plan. We analyze these three alternate
project plans for FCS to discover which one
can most likely be completed soonest and
cheapest.

“Now, I’ll manage better this time.” Alice in
Wonderland

INTRODUCTION
U.S. Army Future Combat Systems

(FCS) is a complex of information technol-
ogies, sensors, and command systems con-
stituting a project with scores of tasks ex-
pected to require more than a decade and
$16 billion (2004 U.S. dollars) just in system
development and demonstration costs. In
fiscal year (FY) 2005, FCS is expected to
consume more than half of the U.S. Army’s
budget for all system development and
demonstration, and perhaps $94 billion to

acquire 14 of the 18 systems needed for FCS
initial operational capability by the year
2010 (Brady, 2003; Francis, 2004). The U.S.
General Accounting Office (GAO) (2003)
finds FCS vulnerable to significant cost and
schedule growth, and suggests alternate
project designs to mitigate risk.

Francis (2004) outlines the accomplish-
ments that must be coordinated in order for
FCS to succeed, which we paraphrase:

• A specialized C4ISR (Command, Con-
trol, Communications, Computer, Intel-
ligence, Surveillance, and Reconnais-
sance) network must be developed for
FCS;

• Fourteen major weapon systems and
platforms must be designed and inte-
grated simultaneously with other sys-
tems, subject to physical limitations;

• At least 53 technologies that are consid-
ered critical to achieving required per-
formance capabilities must be matured
and integrated;

• At least 157 Army and joint-forces sys-
tems must also be adapted to interoper-
ate with FCS, which will require the de-
velopment of nearly a hundred new
network interfaces; and

• An estimated 34 million lines of software
code will be required to operate FCS.
This is nearly five times the software
required for the Joint Strike Fighter,
which had the largest software require-
ment of any Department of Defense ac-
quisition prior to FCS.

FCS is so complex, a number of normal
procedural reviews and hurdles have been
relaxed, enabling an independent initial
operational test and evaluation using an
incomplete prototype scheduled for 2008
(Welch, 2003).

We seek a “project design” for such a
long-term, high-risk, complex system. We
anticipate that higher-risk tasks will exhibit
more uncertainty and thus may take longer
than planned and cost more. We are willing
to state probability distributions predicting
the cost and duration of each task, but we
view an independence assumption be-
tween task outcomes as foolhardy: In com-
plex, high-technology projects, trouble
breeds company.

We seek a “robust project schedule”
that offers the least schedule risk. We want
to plan to complete our project at some
given budget, by some given time, with
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some given probability. We can rearrange some
of the planned project partial orders among
tasks—i.e., what predecessor tasks have to be
completed before any given task can start—and
these rearrangements might influence schedule
robustness. Our problem is: which rearrange-
ment offers the most robust project schedule?

SCHEDULE OPTIONS AND
SCHEDULE RISK

We refer to schedule risk as the costs of
schedule overruns evaluated by their likeli-
hoods. Planners might be presented with a set
of options for scheduling the range of tasks that
comprise a large acquisition project. These op-
tions must abide by a common set of temporal
and fiscal constraints. They should also reflect
the inherent uncertainty of the completion time
of a developmental task. A rational planner
assesses the schedule risk of each option and
selects the option that affordably poses the least
risk.

Significant “knowledge demonstration”
(i.e., showing you can actually build compo-
nents that integrate in the system design) often
occurs late in development and early in pro-
duction of a major defense acquisition pro-
gram. The highest schedule risk comes when
developed components must be integrated into
a system of systems. Welch (2003) observes that
the unusual complexity of FCS exposes it to
higher schedule integration risk than normally
expected of a major program. In particular, FCS
is susceptible to “late cycle churn” to fix prob-
lems discovered late in development. Francis
(2004) identifies the following factors that dis-
pose FCS to late cycle churn, which again we
paraphrase:

• Technology development is expected to con-
tinue through to the production decision;

• Technology development will still be ongo-
ing at the design readiness review, putting at
risk the stability of ongoing system integra-
tion;

• Production is planned to start while technol-
ogy development and system integration are
continuing and the first prototypes are being
delivered;

• The final production decision will be made
before some technologies reach their re-
quired maturation and before an integrated
system demonstration has been conducted;

• Production delivery will start before the
Army has completed the first full demonstra-
tion of FCS as an integrated system; and

• The full-rate production decision will be
made while testing and demonstration are
continuing.

The FCS program executive office has pre-
pared a baseline project plan (i.e., a schedule
with funding) for the system development and
demonstration phase that governs current ac-
quisition policy. Several alternate project plans
have been proposed by the General Accounting
Office (2003) to mitigate FCS schedule risks. We
examine the baseline plan and two of the GAO
alternatives here.

1. “FCS baseline” plan
The baseline plan develops all major sub-

systems concurrently, rather than developing
one first to set the development context for
follow-on systems. The FCS program executive
office acknowledges that this plan is ambitious,
and that the program was not ready for system
development and demonstration when it was
approved (Francis, 2004).

2. “GAO risk first” plan
This plan modifies the baseline to address

risky technologies up front, requiring that the
technology readiness level (a gauge of comple-
tion) be “at least 6” to pass intermediate review
and “at least 7” to qualify for production
(Wynne, 2003). Many key technologies are be-
low the 6 threshold, and the FCS program ex-
ecutive office has already developed risk-miti-
gation strategies for each. This GAO suggestion
first matures technologies that are below the
technical readiness-6 threshold, and then pro-
ceeds as scheduled in the baseline plan. The
advantage is that test and integration tasks oc-
cur later in the schedule, with theoretically re-
duced schedule risk compared to the baseline
plan.
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3. “GAO C4ISR first” plan
This plan modifies the baseline to develop

C4ISR tasks before all others. The C4ISR com-
ponents are believed to pose the greatest sched-
ule risks to FCS development due to their scope
and complexity. They are expected to require
about 16 million lines of software code (of the
34 million total estimated), of which more than
half will be new code (Welch, 2003). This huge
undertaking is vulnerable to cost and schedule
overruns. By investing early in these compo-
nents, subsequent C4ISR test and integration
tasks should pose less risk than in the baseline.

Key distinctions between these alternate
plans are that the partial orders among tasks
may change between plans and any task com-
mon to all of the plans may be allocated differ-
ent risk levels in each. For instance, “system
integration and testing” is high-risk in the
“baseline plan” because immature technologies
must be concurrently developed and inte-
grated, but this same task has lower risk in the
“GAO risk first” plan.

The three alternate plans displayed in the
Appendix use nominal (i.e., unclassified, non-
proprietary) FCS task data provided by the
Cost Analysis Improvement Group, Program
Analysis and Evaluation (PAE), Office of the
Secretary of Defense.

TIME FIDELITY
Monthly time fidelity suffices for purposes

of long-term planning and budgeting, although
it is also customary to offer annual budget ac-
counting for such plans and perhaps to conduct
annual reviews of task progress. Indeed, annual
task reviews are the most substantive control
points in such projects, given that they are tied
to annual budget authorizations. Accordingly,
we plan all activities and events in months, but
make annual task-state reviews with possible
consequences on task duration and time.

EVALUATE EACH “PROJECT
DESIGN” FOUR WAYS

We were asked to analyze the FCS baseline
plan and the two GAO alternatives. The follow-

ing is essentially a series of project reports as
we went back to our PAE sponsor with inter-
mediate results, seeking guidance for the next
steps to try. We do not recount a lot of ideas
that did not work. Overall, we spent 8 person-
weeks with PAE, and 24 person-weeks finding
out what works, and what doesn’t. Remember:
the goal here is discovering new, effective ways to
improve cost estimation for this huge, complex
project, not manage it.

First, we just find the deterministic project
duration (i.e., the “shortest longest path length”
in time, or simply the “critical path length.”).
This is easy, and exercises our newly-com-
pleted scenario data sets. We are still debug-
ging and scrubbing data.

Then, we ignore costs and budgets, but
assert probability distributions for task dura-
tions and apply Monte Carlo simulation to
evaluate the critical path induced from each
sampled project instance. The statistics we
gather, and experience we gain, helps us un-
derstand the behavior of each project design,
especially the partial orders among tasks.

Next, we provide a list of total project du-
rations in years and a total program budget for
achieving each of these durations. We specify
the year-by-year spending goal of any selected
project duration. Each task can be started only
when all its predecessors in the project design
have been completed. Each task can be started
for any of a range of durations in months, and
each of these durations has a monthly cost pro-
file. Once a task is started, it cannot be inter-
rupted. However, a task start can be delayed
for lack of available budget(s) sufficient to sup-
port its chosen, uninterrupted duration once
started. We optimize this deterministic, cost-
constrained project schedule to minimize total
project duration.

We note that “costs” need not be strictly
expressed in constant-dollar allocations, but
can include policy penalties rewarding desir-
able outcomes (i.e., finishing earlier), or penal-
izing bad ones (i.e., finishing very late). But,
although completion time is a concern, the
over-arching constraint will be total obligation
authority (i.e., money) committed to the pro-
gram.

Finally, we nest our cost-constrained
project schedule optimization within an annual

ESTIMATING TOTAL PROGRAM COST

Military Operations Research, V11 N4 2006 Page 43



state review simulation of each active task (i.e.,
task in progress at time of review). At each
annual review, each active task may be delayed
depending on a probability distribution that
depends on the risk of that task, or on any prior
experience with any other task. So, year-by-year,
we conduct an annual state review of all the
active tasks, then reoptimize the remaining
planning horizon. This takes a lot of computa-
tion, but the insights are worth the effort.

RELATED RESEARCH
Malcolm, Roseboom, Clark, and Fazar

(1959) introduce Program Evaluation and Re-
view Technique and Critical Path Method
(PERT-CPM) developed for the Polaris fleet
ballistic missile program, and Kelly (1961, Kelly
1963) provides a mathematical foundation. Wi-
est (1964) highlights two key shortcomings in
CPM at its nascent stage: it only considers con-
stant task durations and does not recognize
resource constraints.

More recent concepts of CPM allow for
greater flexibility in these areas, for example by
allowing tasks to be scheduled in either “regu-
lar time” (with nominal costs) or in “crash
time” (with higher costs), and by allowing cost
constraints. Even with these innovations the
concept of a “task” remains unitary in nature.
At a fixed point in time of the project, tasks that
are underway are not subject to decisions that
affect their remaining times until completion.

If each task duration is random, and some
deterministic equivalent time is used in CPM,
estimates of project duration are generally op-
timistic as Fulkerson (1962) demonstrates using
discrete random task durations. A task not on a
critical path using mean durations may be on
the critical path with positive probability when
its duration is treated as a random variable.
Dodin (1984) reports upper and lower bounds
on project duration when task durations are
independent random variables, and uses the
Central Limit Theorem to justify treating the
project duration as approximately normally
distributed. While this assumption offers trac-
tability, the longest random-length path is nei-
ther normally distributed in theory, nor in prac-
tice (as can be verified by simple Monte Carlo

simulation), and this assumption can give mis-
leading results.

Resource constraints are admitted by Bow-
man (1958), who introduces linear program-
ming for CPM, and Senju and Toyoda (1968)
and Pritsker, Watters, and Wolfe (1969) state
integer-linear programs representing discrete
decisions. Demeulemeester and Herroelen
(2002) present formulations of resource-con-
strained project scheduling problems and re-
view solution methods.

Using linear and integer linear programs to
represent stochastic models has a long history.
Babbar, Tintner, and Heady (1955), Tintner
(1955, Tintner 1960), and Sengupta, Tintner,
and Morrison (1963) show how to embed opti-
mization within Monte Carlo simulation. Task
duration may be treated as a random variable
with a distribution not completely known (Her-
roelen, Reyck, and Demeulemeester, 1998). Fac-
tors influencing these random variables include
resource availability, scheduling of deliveries,
modification of due dates, and changes in
project scope that might imply the cancellation
or addition of future tasks (Herroelen and Leus,
2004).

Generally, the increased realism of stochas-
tic PERT-CPM modeling comes at the price of
increased analytic abstraction and computa-
tional cost. Deterministic equivalent objectives,
such as the expected project critical path length
or expected costs that include penalties for vi-
olating constraints (Gutjahr, Stauss, and Wag-
ner, 2000), may be easy enough to state and
solve, but the risk of such solutions is much
more difficult to gauge, even given generous
independence assumptions.

If task duration is random and not inde-
pendent of other task durations, the distribu-
tion of the total project duration is difficult to
characterize (Yang, Geunes, and O’Brien, 2001).
An independence assumption is often made to
render tractable analysis, but this assumption is
not realistic. An optimal deterministic schedule
typically has insufficient slack to remain opti-
mal (or even feasible) in an uncertain setting,
and thus lacks robustness (Herroelen, 2004). A
trivial example with two identical, parallel
tasks, each with random duration, reveals this
property.
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In addition, managers want the flexibility
to change their scheduling decisions as the
project evolves. Full dynamic scheduling offers
decision points at task completions (Igelmund
and Radermacher, 1983).

We need resource (essentially budget) con-
straints and we cannot ignore uncertainty. Of
all these historical contributions, we admire
Tintner’s works most for their originality, ele-
gance, and simplicity, and we follow his advice:
for the stochastic modeling, use Monte Carlo
identity simulation, and then use optimization
for each random realization.

Finally, we do assume, as does PERT-CPM,
that each task is separable and distinct from all
others. In our case, these tasks are subcontracts,
so this is true in law as well as in fact: If you
want to re-define tasks, you must re-negotiate
contracts.

FIND SHORTEST PROJECT
COMPLETION DATE FOR EACH
ALTERNATE PLAN WITH NO
BUDGET CONSTRAINT

To check our alternate project plans to see if
we get schedules that make sense, we ignore
budget constraints and just solve a determinis-
tic CPM problem.

Given a project network with fixed task
durations, we wrote a Java (Sun Microsystems,
2005) procedure for an unconstrained reaching
algorithm to search the project tasks over their
adjacencies in partial order to find the comple-
tion time of the project. The completion time is
the length of a longest path from project start to
finish. This is one of the simplest network al-
gorithms (e.g., see topological sorting and
reaching in Ahuja et al., 1993, pp. 107–108),
with worst-case runtime linear in the number
of partial orders.

From a project start in January 2003, this
primitive deterministic analysis yields an earli-
est project completion date of October 2012, for
the “FCS baseline plan.” The Army wants to
field its first unit in September 2012, so this is
reassuring.

Given that we can solve each of these de-
terministic problems in less than a millisecond,

we suggested solving thousands of these prob-
lems in a Monte Carlo simulation to assess
stochastic elements of each project alternative.
PAE agreed.

MONTE-CARLO SIMULATE TASK
DURATIONS FOR EACH ALTERNATE
PLAN WITH NO BUDGET
CONSTRAINT

The three-parameter Weibull distribution is
often used to model the duration of develop-
mental tasks for cost estimation and planning.
Law and Kelton (2000, p. 376) explain the rea-
soning for the use of this distribution. The
Weibull reliability function:

R� x; �, �, �� � e��x��

� ��

, x � �

is completely characterized by its three non-
negative parameters. An absolute minimum
task duration is given by �. For � � 1, the
Weibull density has a mode strictly greater
than �, and this mode appeals managerially as
the task duration of maximum likelihood. The
Weibull also features more and larger devia-
tions from the mode in the positive direction.

Miller (2003) offers a convenient procedure
for specifying the parameters of a three-param-
eter Weibull distribution from intuitive proper-
ties of task duration. We need a value for the
duration mode, xM, (for this, we just use the
longest admissible task duration) and a catego-
rization of the risk level as high, medium, or
low. Miller suggests high risk for unprece-
dented tasks, medium for development and
some new integration tasks, and low for rou-
tine, repetitive, or well-understood tasks. Each
risk level is associated with fixed values of two
attributes of the task duration that together
with with the mode xM are sufficient to deter-
mine all three parameters of the Weibull. At-
tribute RM � xM/� is the ratio of the mode to
the minimum duration and PM � P(X � xM) is
the probability that the duration exceeds the
mode. Miller suggests for (risk, RM, PM) the
values (high, 1.25, 0.8), (medium, 1.20, 0.7), or
(low, 1.15, 0.6). PAE concurs.
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The three-parameter Weibull distribution
can be defined using either triplet (�, �, �) or
(RM, xM, PM). Table 1 shows the mapping be-
tween these equivalent descriptions. For exam-
ple, a medium-risk task with most-likely dura-
tion xM � 36 months is endowed with RM �
1.20 and PM � 0.7, and the associated Weibull
parameters are:

� �
36�1 � 1/1.20�

��ln�0.7��1�ln�0.7� � 11.65,

� �
1

1 � ln�0.7�
� 1.554, and � �

36
1.20 � 30.0.

In consultation with PAE, we truncate our
Weibull at its 90th percentile to avoid unrealis-
tically-long project durations. The maximum
allowable duration truncation point is calcu-
lated dMax � � � �[�ln(0.1)]1/�. Such a Weibull
is trivial to generate from a unit-uniform vari-
ate U via X � � � �[�ln(1 � .9U)]1/�.

We compare the three FCS project plans
(baseline, GAO risk first, and GAO C4ISR first)
ignoring cost constraints. For each simulated
iteration, new task durations are sampled from
their Weibull probability distributions and the
resulting project completion time is recorded.
The simulation is repeated for 60,000 iterations
(i.e., we commit about a minute of computing
time to each case). We thus induce the random
distribution of project completion time for each
project plan. Results from these simulations ap-
pear in Figure 1.

OPTIMIZE A BUDGET-CONSTRAINED
DETERMINISTIC SCHEDULE

Our real-world project has a budget and
costs that may be influenced by the rate at
which we work to finish tasks. We adopt
monthly planning fidelity. For each task, we
introduce a set of discretionary task durations
where each duration has its own month-by-
month cost profile for completing the task. Our
total project budget depends on the finish year
we choose, where each candidate finish year
induces a completely independent set of year-
by-year budget guidelines. These generaliza-
tions suggest an optimization model to identify
the least expensive feasible project completion
time. We discretize the starting times for tasks
and task durations to months, and to use the
following integer linear program to suggest a
project schedule:

Index Use [	cardinality]
y � Y Fiscal year (alias yh, yf)

[	20]
i � I Task (alias j) [	200]
� � I Distinguished, last task

in project
(i, j) � A Pairwise partial order:

task i must be completed
before task j starts

m � M Planning month [	240]
m � M (y) Month in fiscal year y

s � si � Si � M Start month for task i
d � di � Di Task i duration in

months
1 � pi � di Months since start of

ongoing task i

Given Data [units]
budgety,yf, budgety,yf Lower and upper cost

range during fiscal
year y if program
finishes in fiscal year
yf [cost]

costidp Cost of ongoing task i
with duration d

Table 1. Association between attributes and
parameters of the three-parameter Weibull
distribution show how to map from attributes to
Weibull parameters or vice versa.

Attributes Parameters

RM �
xM

�

�

�
xM�1 � 1/RM�

��ln�PM��1�ln�PM�

xM � � � ��1 �
1
��

1/�

� �
1

1 � ln�PM�

PM � e��1�1/��

� �
xM

RM

ESTIMATING TOTAL PROGRAM COST

Page 46 Military Operations Research, V11 N4 2006



during elapsed month
p [cost]

pen_under, pen_over Cost per unit of
cumulative budget
range violation
[months/cost]

Decision Variables [units]
Xisd � 1 if task i is

started in month
s with duration
d, 0 otherwise
[binary].

Qyf � 1 if finish
year of program
is year yf, 0
otherwise
[binary].

UNDERy,SLACKy,OVERy When we
compare
expenditures
through fiscal
year y with
desired lower
and upper
ranges on total
budgets, these
variables
respectively

measure lower-
range violation,
unspent funds
below upper-
range, or upper-
range violation
[months/cost].

Formulation

MIN
X,Q

UNDER,SLACK,OVER

�
s�S�,d�D�∧ s�d�1��M�

�s � d � 1�X�sd

� �
y�Y

�pen_underUNDERy � pen_overOVERy�

(F1)

s.t. �
s�Si,d�Di∧ s�d�1��M�

Xisd � 1 	 i � I

(F2)

X�sd � Qyf 	 yf � Y,s � S�,d � D�∧ s � d

� 1 � M� yf � (F3)

�
yf�Y

Qyf � 1 (F4)

Figure 1. Sixty-thousand samples of each alternate project plan are depicted. There are no cost constraints and
each task duration is generated independently from a Weibull distribution reflecting its risk in that plan. “GAO
risk first” is the most desirable plan with the highest probability of an early completion time, while the baseline
plan has the lowest probability of successful completion at any given time.
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�
yh�y,m�M� yh�,i�I,s�Si,d�Di

∧ m�s�1�1∧ m�s�1�d∧ s�d�1��M�

�costid�m�s�1�Xisd�

� UNDERy � SLACKy � OVERy

� �
yh�y,

yf�Y∧ yf�y

�budgetyh,yf�Qyf 	 y � Y (F5)

SLACKy � �
yh�y,

yf�Y∧ yf�y

�budgetyh,yf

� budgetyh,yf�Qyf 	 y � Y (F6)

�
s�Si,d�Di∧ s�d�1
sj

Xisd

� Xjsjdj 	 �i, j� � A, sj � Sj, dj � Dj

∧ sj � dj � 1 � �M�∧ sj 
 MIN
s�Sid�Di

�s � d � 1�

(F7)

Xisd � �0, 1� 	 i � I, s � Si, d � Di

(F8)

Qyf � �0, 1� 	 yf � Y (F9)

UNDERy � 0,SLACKy � 0, OVERy

� 0 	 y � Y (F10)

Verbal Description
The overarching goal is to decide how long

the project should take to complete. The objec-
tive function (F1) expresses total planned
project duration in months, plus an elastic pen-
alty term for any violation of cumulative bud-
get ranges over the planning horizon. Each par-
tition constraint (F2) requires that exactly one
start month and duration be selected for each
task. Each constraint (F3) permits the last
project task to be completed in a fiscal year only
if that fiscal year has been selected for project
completion. Constraint (F4) requires that ex-
actly one project completion year be selected.
Each constraint (F5) accumulates expenditures
from the first fiscal year through a current fiscal
year and determines whether the cumulative
budget ranges have been satisfied, or violated.
(This cumulant form is amenable to both a lin-
ear programming solver and to managerial in-

terpretation: Brown et al., 1997.) Each con-
straint (F6) limits cumulative slack budget by
the hard constraints on yearly program budget
determined by finish year. Each constraint (F7)
ensures, for a pair of tasks adjacent in prece-
dence, that the predecessor task must be com-
pleted before the successor task can start. Vari-
able domains are defined by (F8–F10). (F8) can
restrict admissible start months for each task
and the admissible durations of each task.

TASK DURATIONS AND COSTS
For a task started in month s for duration d

months, we can assert any month-by-month
cost distribution we want, even including costs
for months preceding task start or following
task completion (as military research and de-
velopment often requires: Brown et al., 2004).
Here (following explicit guidance from PAE),
we simplify: no matter when a task might start
for a d-month duration, we allocate its Task-
_Costd over each month of this duration with a
Rayleigh distribution truncated at its 97-th per-
centile, so that its cost in month p would be:

Month_Costp � �Task_Costd/0.97��exp���p

� 1�2ln�0.03��/d2� � exp��p2ln�0.03��/d2��.

EACH POSSIBLE COMPLETION
YEAR HAS ITS OWN BUDGET

The key policy question is (always) “how
much are we willing to spend and when are we
willing to spend it to finish our project (e.g., by
the end of any given future fiscal year)?” Are
we willing to spend more for a quicker comple-
tion? Are there competing projects that restrict
our planned spending pattern? For planning
purposes, sooner or later we have to at least
estimate upper and lower limits on the overall
planned project budget for each financial year
of each planned project duration. Here, for any
candidate project completion year and budget,
we also use a Rayleigh distribution to distribute
this budget year-by-year.

A complex, long-term military project
rarely meets all its planned budget targets.
Sometimes allocated funds are available before
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they can be used and sometimes costs exceed
projections. Accordingly, we accumulate any
year-by-year over-expenditure or under-expen-
diture, but penalize any such cumulative viola-
tion year-by-year until the surplus or deficit is
repaired. The idea (Brown et al., 2004) is to
allow some reasonable flexibility in program
management, while showing good faith adher-
ing to overall project budget guidance.

FCS ANNUAL BUDGETS
An FCS project budget estimate has been

developed with help from PAE. Separate esti-
mates must be prepared for each feasible
project duration, ranging from FY2010 to
FY2016. Table 2 shows the minimum, planned
and maximum annual budgets for a FY2011
completion that has been Rayleigh-allocated
over the planning years.

Preparing budgets for each completion
year, we try to follow the best guidance avail-
able. For example, a GAO review of FCS (Fran-
cis, 2004) concludes that a one-year delay in
FCS would increase costs by $4 billion to $5
billion (during the system development and
demonstration, and production phases). Rela-
tive to the total projected cost of FCS, this rep-
resents a 0.5% cost overrun per year of delay.
Conversely, Lee (1997) estimates for projects in
general that accelerating the pace of work and

decreasing a project duration by one year
would require an increased budget of 0.2%. Of
course, delays in any accelerated plan subject it
to cost overruns as well.

SUPERIMPOSE MONTE CARLO
SIMULATION OF ANNUAL TASK
REVIEWS (WITH POSSIBLE TASK
DELAYS AND COST CHANGES) ON
SCHEDULE OPTIMIZATION

We nest our cost-constrained project sched-
ule optimization within a simulated annual
“project review” of each then-active task. Each
reviewed active task may be delayed depend-
ing on a probability distribution that depends
on the risk of that task, or on any prior experience
with any other task. The cost of each reviewed
task may also change, as can the forecast cost or
duration of any future task. Each annual project
review is followed by a re-optimization of the
remaining future planning horizon. Year-by-
year, we conduct an annual project review, re-
optimize, and so forth. Figure 2 illustrates how
this simulation might progress.

In our simple example, each active task
reviewed is delayed with (risk, probability, and
delay) of (high, 0.5, 140%); (medium, 0.3, 120%);
or (low, 0.2, 110%), and a delayed task’s costs

Table 2. For a project completion in FY2011, a nominal total FCS system development and demonstration
budget of 20.04 billion 2004 dollars has been Rayleigh-allocated by fiscal year. These planned annual
budgets are goals, but the minimum (20%) and maximum (105%) budget ranges are hard constraints. The
sums of annual expenditures from FY2003 through any given year are constrained by these cumulative hard
constraints. Within these hard cumulative limits, any cumulative expenditure under- or over-plan is
penalized and carried forward to the next year, where it will be penalized again if not mitigated.

Year Minimum Budget ($ Million) Planned Budget ($ Million) Maximum Budget ($ Million)

FY2003 $ 175 $ 875 $ 919
FY2004 482 2,410 2,530
FY2005 676 3,382 3,551
FY2006 732 3,658 3,841
FY2007 667 3,335 3,502
FY2008 530 2,652 2,785
FY2009 374 1,871 1,965
FY2010 237 1,183 1,242
FY2011 135 674 708
TOTAL $4,008 $20,040 $21,042
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increase with (risk, probability, change) of
(high, 0.5, 150%), (medium 0.3, 130%), or (low,
0.2, 110%). As a practical matter, we permit a
task to be delayed to, at most, twice its original
duration (longer than this and the task would
likely be cancelled, and the project redesigned).

If an annual review extends the remaining
optimized project duration, the total project
budget changes accordingly (here, it is in-
creased in proportion to the length of the ex-
tended duration, though any adjustment is ad-
missible).

This amalgam of annual budget review
simulation and optimization of the remaining
planning horizon offers a face-valid emulation
of actual practice, and our Monte Carlo annual
simulation can easily be replaced with a human
umpire if more expert control and judgment

appeal. We have tested dependent models for
inflating costs and task durations, and two key
lessons emerge: even mildly inter-task depen-
dent delays cause havoc, and any project over-
seer would intervene long before these results
played out. Although we could model decreases
in task duration and/or cost, this prospect has
never come up with PAE, nor have we ever
observed such a signal event in our careers.

IMPLEMENTING THE OPTIMIZATION
MODELS

The alternate project plans have been set up
in Microsoft Project (2004). We want to use the
graphical user interface offered by Project, as well
as its integration with the MS Office Suite. Our

Figure 2. Each annual review (depicted top-to-bottom separating the shaded and un-shaded portions of each
timeline row) may delay any currently-active task (i.e., any highlighted task spanning shaded and un-shaded
timelines), or change its cost. After each annual review, the remaining schedule is re-optimized with monthly
fidelity, subject to annual budget goals induced by the best project duration still achievable. The optimization
must complete currently-active tasks as specified by the latest annual review, but can choose any admissible
start month for any future task and choose any future admissible task duration it pleases, as long as the
associated costs of the chosen duration are bearable. Directed arcs between partially-ordered task pairs and
nominal Rayleigh-distributed task budgets are shown to illustrate how the optimization must schedule tasks
such that total expenditures follow annual budget guidance.
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optimization (with optional Monte Carlo annual
reviews) is been implemented in the algebraic
modeling language GAMS (Brook et al., 1998).

Each scenario is presented to GAMS as two
input scripts, one for tasks, and the other for
budgets. The former script has a descriptor for
each task specifying each candidate start
month, duration in months, and cost. Nobody
will use an optimization model they can’t con-
trol, so this script (via the Project interface) lets
a planner completely control alternatives, in-
cluding “start this task in this month for this
duration at this cost.”

As you would expect, the GAMS script im-
ports a scenario from Project, solves it, and re-
turns the solution for display and analysis. But,
the majority of our GAMS script is devoted to
diagnosis and exigent report writing, to better
monitor the behavior of our experimental mod-
els.

For instance, early experience with our
model revealed that although we offer precise
controls for task start times and durations, no-
body used these: by default, each task can start
any time for any admissible duration. As a
consequence, an enormous number of alternate
task start variables was generated. Solvers me-
chanically detect and remove redundant model
features. However, such “presolve” features do
not tell you what they have removed, or why.
And, presolve will not identify all redundan-
cies: each reduction involves no more than re-
moving one redundant variable with an equa-
tion substitution. You can’t be sure you have
removed the redundancies you worry about
unless you filter them out yourself.

So, in addition to the index domain filtering
that clutters the summations in our formulation
(but makes our intent clear), we formulated an
auxiliary, trivial optimization (not displayed) to
find the admissible start times and durations
for each task.

We work on our formulation and model
generator until presolve finds as little as possi-
ble left to remove. After such filtering, a typical
scenario consists of about 53 thousand con-
straints, and 19 thousand variables, almost all
binary. We would expect such an integer linear
program to solve on a laptop in minutes.

We used CPLEX 9.0 (ILOG, 2004). Default
CPLEX stalled, and could not find an initial

feasible integer solution. We provided an ad-
missible integer starting point from our trivial
presolve. CPLEX bogged down in problem pre-
processing and integer cut generation. Eventu-
ally, to get CPLEX to work, we had do disable
most of its default options for cut generation
and root node heuristics.

Our solve times are still longer than we
expected. If we fix project duration and budget,
the resulting optimization model is easier to
solve (and we can automate this fixing in
GAMS for each project duration we fancy).
However, even this simplifying restriction
leaves us with a daunting scheduling problem:
to choose a start time and duration for each task
that satisfies every partial order between tasks,
maximally complies with the cumulative bud-
get guidance, and also finishes on time. Typi-
cally, it takes us 3 GHz-hours to resolve to a
10% integrality gap.

These integer linear programs may be hard
to solve, but they convey remarkable insight we
have not gained by any other means. ILP mod-
els depend on well-defined assumptions and of-
fer fidelity that closely mimics real-world plan-
ning, and they also convey an objective
assessment of solution quality that, for instance,
lets us confidently compare alternate scenarios.

For instance, the objective assessment of
solution quality we get from the integer linear
programs is invaluable when comparing two
competing alternatives: given assumptions stated
clearly, and data defined commensurately, no
matter how complex the project, if the optimized
solutions exhibit integrality gaps that do not in-
tersect, we can confidently declare a winner.

RESULTS AND CONCLUSION
A Rayleigh-distributed project budget just

does not fit the needs of the constituent FCS
tasks as the project proceeds for any alternate
project plan. Accordingly, we state the budget
as a cumulative goal from project start in
FY2003 through each year, with any cumulative
under- or over-expenditure carried forward to
later years, charging a penalty for any deviation
from cumulative budget until that violation is
rectified. Without this flexibility, we must ex-
tend the project finish year and leave Rayleigh-
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allocated funds for intermediate years unused.
For long-term planning, this makes no sense at
all. Figure 3 shows how the deterministic, op-
timized plans use the Rayleigh-distributed
project budget, and displays the same expendi-
tures in cumulative terms.

Starting the “baseline plan” in January
2003, we find a (cumulative) cost-constrained
schedule that finishes just as quickly as primi-
tive CPM with no cost constraints at all: Octo-
ber 2012. Our nominal task costs and total bud-
get restrictions just suffice without delaying the
project: this is another reassuring discovery.
And, our suggested cumulative expenditure
history follows long-term guidance closely.

When we simulate annual reviews, with
task delays, the optimized project plans take a
lot longer to complete (see Figure 4). Monte
Carlo delays of task durations as the project
proceeds extend achievable project completion,
so the projected budget (discovered year-by-
year as the project progresses and these delays
arise) is characterized by transitions to succes-
sively longer finish-year budgets (see Figure 5).

For the baseline plan, just introducing ran-
dom Monte Carlo task durations increases the
median project duration by about 10%. If bud-
get constraints are imposed in addition to ran-
dom task delays, estimated project duration
rises by about 39%. For FCS, a 39% delay cor-

responds to approximately four years, where a
one-year delay has been estimated by the GAO
to add between $4 billion and $5 billion to the
total acquisition cost.

In the absence of budget constraints, miti-
gating the technologies below the required ma-
turity level prior to other tasks (GAO risk first)
leads to project completion faster than the base-
line plan. When budget constraints are added,
this plan maintains its advantage although it is
subject to delays similar to the baseline plan.

Table 3 assembles FCS project duration es-
timates for each alternate plan and from each of
our models. With no budget constraint, it’s best
to mitigate high-risk technology first. With
project budget constraints, both the baseline
and risk-first plans are attractive, but with an-
nual review simulation, the GAO C4ISR first
plan turns out to be least vulnerable to delay.
Given the high risk of the FCS program, we
prefer the behavior of GAO C4ISR first.

FCS is a long, complex, technically risky,
expensive, and important project. But, FCS is not
unique in these respects: there are (always)
other defense projects that are comparable
(Brown et al., 2004). Based on our planning
experience with such projects, we recom-
mend a high-level assessment such as that
presented here to forecast as early as possible
and as well as possible where the fragilities

Figure 3. A Rayleigh-distributed budget for a FY2012 project finish is shown in annual and cumulative terms
along with deterministic, optimized expenditures for each alternate project plan. The budget is stated as a
cumulative goal from project start in FY2003 through each year, with any cumulative under- or over-expendi-
ture carried forward to later years, charging a penalty for any deviation from cumulative budget goal until that
violation is rectified. Note the banking of unused budget (e.g., in FY2007) in anticipation of borrowing it back
(e.g., in FY2010). Without this flexibility, we must extend the project years beyond FY2012 and leave allocated
funds for intermediate years unused. For long-term planning, this makes no sense at all.
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and vulnerabilities are in an overall project
plan, and to prescribe work-arounds sooner,
rather than later.

We emphasize key, distinguishing, real-
world advantages offered here. These compo-
nent models are easy to discuss, illustrate, brief,
and understand: Project scheduling and prim-
itive Monte Carlo simulation are ubiquitous.
We co-opt the graphical user interface of a
project management system and its data base,
and embed the optimizer and Monte Carlo re-
views, thereby producing a visually-appealing
planning product at a low per-seat cost. The em-
bedding of deterministic optimization within
time-phased simulation decouples the two in a
way that requires few simplifying assumptions
and that invites very basic, intuitive analysis to
evaluate results. We closely mimic real-world be-
havior:

• each optimization decision offers to start a
task for some duration on some cost sched-
ule, and this corresponds directly to contract
terms we must commit; and

• simulated annual review of each then-ac-
tive task state can depend on any prior
learning, but, more importantly, this de-
pendence can be described in simple, intu-
itive terms of the facts already in hand for
the review.

Figure 4. Annual expenditures are shown for optimized FCS project schedules with a simulated annual review
of each then-active task that, depending on task risk, may randomly induce a delay and a cost increase. As
expected, project completion is delayed for all project plans, and costs rise (by about four years and $600 million,
respectively). The idea is to animate how these task delays arise over time and how they cascade and influence
other competing or succeeding tasks. Note that GAO C4ISR finishes two years before the other plans.

Figure 5. For the baseline plan, as the project
progresses year-by-year and is subjected to annual
reviews that delay then-active tasks, the remaining
project tasks are reoptimized and the project takes
longer to complete. This shifts the best achievable
project budget to a later year. The display shows
when the optimization must jump to a larger and
longer budget.
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EPILOG
Time will tell whether our work proves

prescient for FCS. We have delivered presenta-
tions to the Cost Analysis Improvement Group,
Program Analysis and Evaluation, Office of the
Secretary of Defense, and thank them, espe-

cially Mr. Walter Cooper, for their continued
encouragement and support. Grose (2004) ex-
hibits additional underlying detail. Since this
writing, a number of revisions to the FCS pro-
gram and its nominal schedule have already
arisen, and these are reported in the open press,
where we direct interested readers.

Table 3. Deterministic CPM gives a lower bound for each plan duration. Monte Carlo CPM, here using for
each task an independent Weibull task time based only on that task’s risk, shows the delaying influence of
task time variability on the median project duration for 60,000 samples of each schedule plan. Deterministic
optimized plans honor project budget goals and show the delaying influence of doing so. Optimized plans
with Monte-Carlo annual reviews show the combined delaying effects of task time variability and budget
goals. For reference, a start in January 2003 for 118 months yields a finish in October 2012.

Schedule Plan

Estimated FCS Program Durations in Months

No Budget Constraint
Project Budget Constraint by
Fiscal Year Completed, and

Allocated Yearly

Deterministic CPM Monte Carlo CPM
Deterministic

Optimized

Optimized with
Monte Carlo

Annual
Reviews

Baseline 118 150 118 164
GAO Risk First 116 126 116 162
GAO C4ISR First 129 139 130 145
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APPENDIX: THREE ALTERNATE PLANS FOR FCS SYSTEMS DEVELOPMENT AND
DEMONSTRATION
Summary description tasks are in bold text (Microsoft, 2004). Zero-duration tasks are milestones.

Baseline Plan:

ID Task Name
Estimated Cost

($M)
Duration
(Weeks)

Successors

1 Notional Start 0.00 0 24,13,3
2 Major Events
3 Milestone B Complete 0.00 0 4,67,37,29,25,14
4 SFR (System Functional Review) 0.00 0 5,16,26
5 SoS PDR Complete 0.00 0 6,17
6 SoS CDR Complete 0.00 0 7
7 Facilitation 0.00 0 8,95
8 LL IPR Waiver 0.00 0 9,97
9 IPD (Milestone C) 0.00 0 10,77
10 IOC 0.00 0 11,32
11 UA 0.00 0 101
12 SoS Definition and Design
13 Systems Engineering 571.42 104 5
14 Systems Design 1,428.57 260 10
15 Prototype Systems Build and Test
16 1st Variant PDC (Preliminary Design

Complete)
0.00 0 17

17 Last Variant PDC (Preliminary Design
Complete)

0.00 0 18,20,44

18 Long Lead Prototype 800.00 52 19,21
19 Prototype Integration and Assembly 1,200.00 78 22
20 First Variant CDC (Critical Design Complete) 0.00 0 69,21
21 Last Variant CDC (Critical Design Complete) 0.00 0 22,6
22 Final Prototype 0.00 0 97,8
23 C4ISR Software and Platform
24 SW Build 1 507.93 104 27,44
25 SW Build 2 634.92 130 27,34,69,31,46,52,59
26 SW Build 3 825.39 169 28,52,59
27 SW Build 4 571.42 117 9,63,59
28 SW Build 5 507.93 104 83,89,64
29 SIL Delivery 1 (System Integration Lab) 253.96 52 68,33,30
30 SIL Delivery 2 253.96 52 69,31,27,52
31 SIL Delivery 3 253.96 52 32,28
32 SW Update 190.47 39 11,80
33 Software PDR Complete 0.00 0 34,5
34 Software CDR Complete 0.00 0 6
35 Integrated Test Program
36 IPS1 (Integration Phase SDD 1)
37 SoSIL Development 280.99 51 38,39,30
38 Integration 71.62 13 41,5,40
39 Sims Delivered 0.00 0 40
40 IT and UT 71.62 13 42
41 TRR 0.00 0 42
42 Analysis 71.62 13 45,44
43 IPS2
44 Integration 280.99 51 47,6,46
45 Early Emulators Delivered 0.00 0 46
46 IT/UT 71.62 13 48
47 TRR 0.00 0 48
48 Analysis 71.62 13 50,51,28
49 IPS3
50 Integration 209.36 38 53,52
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APPENDIX: Continued

Baseline Plan:

ID Task Name
Estimated Cost

($M)
Duration
(Weeks)

Successors

51 Initial DP Prime Items Delivered 0.00 0 52
52 IT and UT 71.62 13 54,55
53 TRR 0.00 0 54,55
54 Analysis 104.68 19 58,8
55 User Trial 11.01 2 57
56 IPS4
57 Integration 187.32 34 60,59
58 Initial System Deliveries 0.00 0 59
59 IT and UT 71.62 13 61,63,72
60 TRR 0.00 0 61
61 Analysis 71.62 13 9
62 IPS5
63 Integration 209.37 38 64
64 IMT 71.63 13 65
65 Analysis 71.63 13 77,100
66 SoS Testing and Integration
67 Phase 1: Integration and Test SDD (Simulation) 183.75 78 70,5
68 Phase 2: HW and SW 214.37 91 6,95
69 Phase 3: Prototype 214.37 91 72,57,8
70 Integration and Qualification and Live Fire

Tests
489.99 208 73,9,76

71 Test Events and Milestones
72 LUT 1 4.71 2 73
73 LUT 2 4.71 2 77,79,74,98,99
74 IOT (Initial Operational Test) Phase 1 47.11 20 10,75
75 IOT Phase 2 44.76 19 80
76 Integration and Test Production 214.37 91 10,80
77 FUSL 244.99 104 80,11
78 Training and Fielding 244.99 104 80
79 IOTE 1 61.25 26 80
80 IOTE 2 30.62 13 11
81 Combat Systems Testing
82 Phase 1: LRIP Prime Items
83 Integration 634.15 39 85,89,100
84 LRIP PI for SoSIL 0.00 0 85
85 LRIP PI for TFT Delivered 0.00 0 86
86 Testing 211.38 13 87,90
87 Analysis 211.38 13 92,74,79
88 Phase 2: LRIP Late LRIP PI
89 Integration 520.33 32 91
90 LRIP PI for SoSIL 0.00 0 91
91 LRIP PI for TFT Delivered 0.00 0 92
92 Testing 211.38 13 93
93 Analysis 211.38 13 11,10,32
94 Production
95 Facilitation (Pre-LL Production) 682.93 52 100,84,96
96 Facilitation (LL Production) 1,195.12 91 100,84
97 Long Lead Lot 1 682.93 52 98,99,100,9,83,84,76
98 Lot 1 1,024.39 78 79,78
99 Lot 2 1,707.32 130 11,80
100 Lot 3 1,707.32 130 11,80
101 Notional End Task 0 0
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APPENDIX: GAO “Risk First”: Mitigate High Risk Technologies First

ID Task Name Estimated Cost
($M)

Duration
(Weeks)

Successors

1 Notional Start 0.00 0 57,13,3
2 Major Events
3 Milestone B Complete 0.00 0 4,100,70,62,58,14
4 SFR (System Functional Review) 0.00 0 5,49,59
5 SoS PDR Complete 0.00 0 6,50
6 SoS CDR Complete 0.00 0 7
7 Facilitation 0.00 0 8,128
8 LL IPR Waiver 0.00 0 9,130
9 IPD (Milestone C) 0.00 0 10,110
10 IOC 0.00 0 11,65
11 UA 0.00 0 134
12 SoS Definition and Design
13 Systems Engineering 571.43 104 5
14 Systems Design 1,428.57 260 10
15 Prototype Systems Build and Test
16 TRL Mitigation (Technology Readiness Level)
17 KPP 1: Joint Interoperability
18 Interface and Information Exchange 113.24 65 4
19 KPP 2: Networked Battle Command
20 Security Systems and Algorithms 249.13 143 6
21 Quality of Service Algorithms 67.94 39 3
22 Wideband Waveforms 181.18 104 5
23 Multispectral Sensors and Seekers 90.59 52 3
24 Combat Identification 22.65 13 3
25 Sensor and Data Fusion and Data Compression 67.94 39 3
26 KPP 3: Networked Lethality
27 Dynamic Sensor-Shooter Pairing and Fire Control 90.59 52 3
28 LOS and BLOS and NLOS Precision Munitions

Guidance
271.78 156 6

29 Aided Target Recognition 67.94 39 3
30 Auto Target Recognition 181.18 104 5
31 Recoil Management and Lightweight

Components
90.59 52 3

32 Distributed Collaboration of Manned and
Unmanned Vehicles

226.48 130 5

33 Rapid Battle Damage Assessment 67.94 39 3
34 KPP 4: Transportability
35 High Power Density and Fuel Efficient

Propulsion
90.59 52 3

36 KPP 5: Sustainability and Reliability
37 Embedded Predictive Logistic Sensors and

Algorithms
90.59 52 3

38 Water Generation and Purification 90.59 52 3
39 KPP 6: Training
40 Computer Generated Forces 22.65 13 3
41 Tactical Engagement Simulation 45.30 26 3
42 KPP 7: Survivability
43 Active Protection System 22.65 13 3
44 Signature Management 90.59 52 3
45 Lightweight hull and Vehicle Armour 10.45 6 3
46 Power Distribution and Control 10.45 6 3
47 Advanced Countermine Technology 226.48 130 5
48 High Density Packaged Power 10.45 6 3
49 1st Variant PDC (Preliminary Design Complete) 0.00 0 50
50 Last Variant PDC (Preliminary Design Complete) 0.00 0 51,53,77

ESTIMATING TOTAL PROGRAM COST
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APPENDIX: Continued

ID Task Name Estimated Cost
($M)

Duration
(Weeks)

Successors

107 IOT (Initial Operational Test) Phase 1 47.11 20 10,108
108 IOT Phase 2 44.76 19 113
109 Integration and Test Production 214.37 91 10,113
110 FUSL 244.99 104 113,11
111 Training and Fielding 244.99 104 113
112 IOTE 1 61.25 26 113
113 IOTE 2 30.62 13 11
114 Combat Systems Testing
115 Phase 1: LRIP Prime Items
116 Integration 634.15 39 118,122
117 LRIP PI for SoSIL 0.00 0 118
118 LRIP PI for TFT Delivered 0.00 0 119
119 Testing 211.38 13 120,123
120 Analysis 211.38 13 125,107,112
121 Phase 2: LRIP Late LRIP PI
122 Integration 520.33 32 124
123 LRIP PI for SoSIL 0.00 0 124
124 LRIP PI for TFT Delivered 0.00 0 125
125 Testing 211.38 13 126
126 Analysis 211.38 13 11,10
127 Production
128 Facilitation (Pre-LL Production) 833.33 65 129
129 Facilitation (LL Production) 1,166.67 91 133,117
130 Long Lead Lot 1 666.67 52 131,132,133,9,116,117
131 Lot 1 1,000.00 78 112,111
132 Lot 2 1,666.67 130 11,113
133 Lot 3 1,666.67 130 11,113
134 Notional End Task 0.00 0

ESTIMATING TOTAL PROGRAM COST
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APPENDIX: GAO “C4ISR First”: Develop C4ISR Infrastructure First

ID Task Name Estimated Cost
($M)

Duration
(Weeks)

Successors

1 Notional Start 0 0 24,13,3
2 Major Events
3 Milestone B Complete 0 0 4,67,37,29,25,14
4 SFR (System Functional Review) 0 0 5,26
5 SoS PDR Complete 0 0 6,16
6 SoS CDR Complete 0 0 7,17
7 Facilitation 0 0 8,95
8 LL IPR Waiver 0 0 9,97,21
9 IPD (Milestone C) 0 0 10,77
10 IOC 0 0 11,32
11 UA 0 0 101
12 SoS Definition and Design
13 Systems Engineering 571.43 104 5
14 Systems Design 1428.57 260 10
15 Prototype Systems Build and Test
16 1st Variant PDC (Preliminary Design

Complete)
0 0 17

17 Last Variant PDC (Preliminary Design
Complete)

0 0 18

18 Long Lead Prototype 800 52 19,20,21
19 Prototype Integration and Assembly 1200 78 22
20 First Variant CDC (Critical Design Complete) 0 0 95
21 Last Variant CDC (Critical Design Complete) 0 0 22
22 Final Prototype 0 0 57,69,97,96
23 C4ISR Software and Platform
24 SW Build 1 507.94 104 27,44
25 SW Build 2 634.92 130 27,34,69,31,46,52,59
26 SW Build 3 825.4 169 28,52,59
27 SW Build 4 571.43 117 9,63,59
28 SW Build 5 507.94 104 83,89,64
29 SIL Delivery 1 (System Integration Lab) 253.97 52 68,33,30
30 SIL Delivery 2 253.97 52 69,31,27,52
31 SIL Delivery 3 253.97 52 32,28
32 SW Update 190.48 39 11,80
33 Software PDR Complete 0 0 34,5
34 Software CDR Complete 0 0 6
35 Integrated Test Program
36 IPS1 (Integration Phase SDD 1)
37 SoSIL Development 280.99 51 38,39,30
38 Integration 71.63 13 41,5,40
39 Sims Delivered 0 0 40
40 IT and UT 71.63 13 42
41 TRR 0 0 42
42 Analysis 71.63 13 45,44
43 IPS2
44 Integration 280.99 51 47,6,46
45 Early Emulators Delivered 0 0 46
46 IT and UT 71.63 13 48
47 TRR 0 0 48
48 Analysis 71.63 13 50,51,28
49 IPS3
50 Integration 209.37 38 53,52
51 Initial DP Prime Items Delivered 0 0 52
52 IT and UT 71.63 13 54,55
53 TRR 0 0 54,55
54 Analysis 104.68 19 58,8

ESTIMATING TOTAL PROGRAM COST
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APPENDIX: Continued

ID Task Name Estimated Cost
($M)

Duration
(Weeks)

Successors

55 User Trial 11.02 2 57
56 IPS4
57 Integration 187.33 34 60,59
58 Initial System Deliveries 0 0 59
59 IT and UT 71.63 13 61,63,72
60 TRR 0 0 61
61 Analysis 71.63 13 9
62 IPS5
63 Integration 209.37 38 64
64 IMT 71.63 13 65
65 Analysis 71.63 13 77,100
66 SoS Testing and Integration
67 Phase 1: Integration and Test SDD

(Simulation)
183.75 78 70,5

68 Phase 2: HW and SW 214.37 91 6,95,57
69 Phase 3: Prototype 214.37 91 72
70 Integration and Qualification and Live Fire

Tests
489.99 208 73,9,76

71 Test Events and Milestones
72 LUT 1 4.71 2 73
73 LUT 2 4.71 2 77,79,74,98,99,76
74 IOT (Initial Operational Test) Phase 1 47.11 20 10,75
75 IOT Phase 2 44.76 19 80
76 Integration and Test Production 214.37 91 10,80
77 FUSL 244.99 104 80,11
78 Training and Fielding 244.99 104 80
79 IOTE 1 61.25 26 80
80 IOTE 2 30.62 13 11
81 Combat Systems Testing
82 Phase 1: LRIP Prime Items
83 Integration 634.15 39 85,89,100
84 LRIP PI for SoSIL 0 0 85
85 LRIP PI for TFT Delivered 0 0 86
86 Testing 211.38 13 87,90
87 Analysis 211.38 13 92,74,79
88 Phase 2: LRIP Late LRIP PI
89 Integration 520.33 32 91
90 LRIP PI for SoSIL 0 0 91
91 LRIP PI for TFT Delivered 0 0 92
92 Testing 211.38 13 93
93 Analysis 211.38 13 11,10,32
94 Production
95 Facilitation (Pre-LL Production) 682.93 52 100,84,96
96 Facilitation (LL Production) 1195.12 91 100,84
97 Long Lead Lot 1 682.93 52 98,99,100,9,83,84,76
98 Lot 1 1024.39 78 79,78
99 Lot 2 1707.32 130 11,80
100 Lot 3 1707.32 130 11,80
101 Notional End Task 0 0

ESTIMATING TOTAL PROGRAM COST
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own words.

INTRODUCTION
Greg Parnell was MORS President in

1993–1994, was elected a Fellow of MORS
in 1997, and was the Clayton Thomas Lau-
reate in 2002. He was Editor of the Military
Operations Research Journal from 1996 to
2001. Greg is currently a professor of sys-
tems engineering at the United States Mil-
itary Academy at West Point and a senior
principal at Innovative Decisions Inc. This
interview was conducted in Greg’s office in
Mahan Hall, West Point on 21 June 2005.

BOB SHELDON: Today is the 21st of
June, 2005 and we’re here at Greg Parnell’s
office at West Point for an oral history in-
terview. First of all, tell us where you were
born and raised.

GREG PARNELL: Before we start, I
am honored to be interviewed and pleased
to learn that you have started a youth
movement in the MORS heritage program!
I was born in Rochester, New York, and I
was raised in several small towns in and
around the city.

BOB SHELDON: Where did you go to
high school?

GREG PARNELL: I went to two high
schools: Avon High School and Caledonia-
Mumford High School. Both are south of
Rochester.

BOB SHELDON: Give me your par-
ents’ names.

GREG PARNELL: George Samuel Par-
nell and Mary Church Parnell.

BOB SHELDON: Did they influence
your decision to study mathematics and
operations research?

GREG PARNELL: No.
BOB SHELDON: Did you take an

early interest in math?
GREG PARNELL: Yes, I was inter-

ested in math, physics, and chemistry. My
high school math teacher helped me de-
velop my abilities in algebra, trigonometry
and geometry.

BOB SHELDON: Where did you go to
college?

GREG PARNELL: For undergraduate
studies, I attended State University of New
York at Buffalo and majored in aerospace
engineering. I did my masters at University
of Florida in industrial and systems engi-
neering. I did a part time degree in systems
management at University of Southern Cal-
ifornia. Finally, I did my Ph.D. at Stanford
in engineering-economic systems. The de-
partment is now called Management Sci-
ence and Engineering.

BOB SHELDON: Were you an ROTC
scholarship student?

GREG PARNELL: Yes. I received one
of the first three-year Air Force ROTC
scholarships. This was before the Air Force
started the four-year scholarship program.
After completing the program as a distin-
guished graduate, I received a regular com-
mission in the Air Force in 1970.

BOB SHELDON: Going from your
bachelors to your masters, how did you
decide on your field?

GREG PARNELL: That’s an interest-
ing story. I was an aerospace engineering
undergraduate. I was working in space op-
erations and I wanted to get an MBA. The
Air Force needed engineers and wanted to
send me for an engineering degree. I wasn’t
real sure what I was getting into, but indus-
trial and systems engineering sounded use-
ful.

BOB SHELDON: Did you have other
assignments before getting your masters?

GREG PARNELL: I had three one-year
assignments before my masters program.
Two space operations assignments; one in
the Space Operations Center in Colorado
Springs, one at a Spacetrack Site in Di-
yarbakir, Turkey. Then I had my first of
several acquisition management assign-
ments at Wright Patterson Air Force Base
while I was waiting for my school slot.

BOB SHELDON: What was your ca-
reer field?

GREG PARNELL: I was originally in
the space operations career field. When I
was in Air Force ROTC, I looked at the
assignment book and it said “Space opera-
tions officers command and direct sensors
throughout the world” so I thought that
was pretty good. When I got on active duty,
I found out that “throughout the world”
included Alaska and Greenland! Early on, I
learned the decision analysis principal of
the Value of Information.
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BOB SHELDON: Did you volunteer to go
to Turkey right away, or was that a normal
rotation?

GREG PARNELL: I went to Colorado
Springs on a four-year controlled tour. How-
ever, my commander released his junior offic-
ers to go to remote after one year. So I had a
choice of going to Shemya, Alaska; Clear, Alas-
ka; Thule, Greenland, or Diyarbakir, Turkey.
Turkey was the best trade-off of mission and
location. This was one of my first multiple ob-
jective decisions!

BOB SHELDON: How did you like Tur-
key?

GREG PARNELL: It was very interesting.
Someone told me that if you want to appreciate
Turkey, you have to appreciate different shades
of brown. We were in a remote area, about 700
miles from the Russian border. The nearest city
was Diyarbakir, the home of Mustafa Kemal
Ataturk, the famous leader of Turkey. I was
able to travel to some of the surrounding area.
One of the interesting trips was to the Mt
Ararat region.

BOB SHELDON: Where did you go after
Turkey?

GREG PARNELL: I went to my first acqui-
sition management assignment at Wright
Patterson Air Force Base, Ohio. I spent 10 years
in acquisition management assignments, at
Aeronautical Systems Division and the Ballistic
Missile Office. Then I got my Ph.D. and did
operations research assignments, including
teaching twice at the Air Force Institute of
Technology (AFIT) and an assignment at Air
Force Studies and Analysis in the Pentagon.

BOB SHELDON: What did you do in your
first acquisition assignment?

GREG PARNELL: I was a subsystem inte-
grator in the Deputy for Subsystems of the
Aeronautical Systems Division. My job was to
coordinate government furnished equipment
that was manufactured and delivered for instal-
lation by defense contractors into the F-111,
A-7, F-5, and F-4 aircraft.

BOB SHELDON: What problems did you
deal with?

GREG PARNELL: The biggest challenge
was providing the equipment to meet the air-
craft contractors need dates. The government
was at risk if government subsystems were not

delivered on time for the prime contractors to
meet their aircraft delivery dates. Through lots
of phone calls, onsite visits, and briefings to
managers, we were able to get the subsystem
deliveries back on schedule.

I was very fortunate that I got operational
experience. In operations you learn to get the
job done as best as you can. Operations gave
me a real-time focus. In Turkey, I was in charge
of changing all the procedures and tactics for a
new system. So I had to deal with the acquisi-
tion community. When I got to the acquisition
community, I better understood acquisition
management. Acquisition gave me experience
thinking like a decision-maker. The operational
and acquisition experiences were of great value
in my subsequent analysis and teaching assign-
ments.

BOB SHELDON: Did you push to get to
grad school or did one of your mentors encour-
age you?

GREG PARNELL: I wanted to eventually
go to grad school; but, I was not ready in my
senior year. After a couple years in the Air
Force, I applied for AFIT.

BOB SHELDON: What kind of curriculum
did you take in your first masters?

GREG PARNELL: It was an 18 month in-
dustrial and system engineering program. I
took courses in systems engineering, operations
research, and industrial engineering. My mas-
ters project was a range scheduling simulation
for an organization at Eglin Air Force Base,
Florida.

BOB SHELDON: How did you choose
Florida for grad school?

GREG PARNELL: I chose some MBA
schools but AFIT chose an engineering pro-
gram for me. My boss, then Lt Col Hank Passi,
talked them out of that school. Then AFIT of-
fered me University of Florida. In addition to a
good location, they had a great program and
great young faculty.

BOB SHELDON: Any notable professors?
GREG PARNELL: Yes, there were several.

Mike Thomas was the department head. He
later was Director of the School of Industrial
Systems Engineering and then Provost at Geor-
gia Tech. Other well known faculty were Thom
Hodges, Don Ratliff, Don Hearn, and Richard
Francis. Thom Hodges was my academic and
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masters project advisor. Thom later became de-
partment head and chaired professor at North
Carolina State.

BOB SHELDON: Were you part of the ac-
quisition career field at the time?

GREG PARNELL: Yes.
BOB SHELDON: What was your assign-

ment after the masters program?
GREG PARNELL: After my masters pro-

gram, I went back to Wright Patterson Air
Force Base to work for Col Hank Passi, who
directed a system program office. I worked on
sound suppressors for the F-15 aircraft and
then became special projects officer for the di-
rector.

BOB SHELDON: Did your grad school in
industrial and systems engineering help you in
your acquisition positions?

GREG PARNELL: Yes. Not so much in my
first job, but the next job at the Ballistic Missile
Office and especially when I became chief of
systems engineering. As chief of systems engi-
neering, I had responsibility for missile perfor-
mance and life cycle cost. For example, one of
the problems we worked was to calculate the
probability that a missile launch accident could
result in a death. We developed a model to
calculate that probability. We also developed
the life cycle cost model used for all system
trade studies.

BOB SHELDON: Did you build some of
those models yourself or did other people build
them for you?

GREG PARNELL: The Aerospace Corpo-
ration was my systems engineering contractor.
They built and operated the models. In one
case, I had to redo the probabilistic analysis
because it was challenged.

BOB SHELDON: When did you start
working on ballistic missiles?

GREG PARNELL: I started in 1978 and
spent four-and-a-half years at the Ballistic Mis-
sile Office. I worked on the Mark 12A reentry
vehicle for the Minuteman III missile, the MX
transporter, and Peacekeeper in Minuteman si-
los.

BOB SHELDON: Were there any interest-
ing challenges you faced?

GREG PARNELL: Yes. As a major-select, I
managed the MX transporter, the vehicle that
moved the missile between multiple protective

structures. My program budget was $3.3 billion
in 1980 dollars. The Director of Engineering
told me I had two problems: making sure the
transporter worked on desert roads and reduc-
ing the life cycle cost.

The mobility challenge was getting a vehi-
cle that weighed over a million pounds to work
in the desert on low cost roads. We had a
program to test the mobility. The specially de-
veloped tires failed very early in the test. We
tried commercial off-the-shelf tires (used for
large mining trucks) and they worked great.
The commercial tires would save money, since
the roads did not have to be significantly im-
proved. We also changed the engine to reduce
costs and increase reliability.

BOB SHELDON: What was the reason for
developing special tires?

GREG PARNELL: We wanted to save
money in shelter construction. The tire height
drove shelter construction costs. Commercial
tires and reduced road construction costs offset
the shelter construction costs.

BOB SHELDON: What happened to the
MX program?

GREG PARNELL: The MX program was
cancelled by President Reagan. The missile was
named Peacekeeper and placed in Minuteman
silos.

BOB SHELDON: What was your job after
the MX transporter?

GREG PARNELL: I became the Chief of
Missile Systems Engineering for the Peace-
keeper missile. During that job, I applied to get
my Ph.D.

BOB SHELDON: How were you spon-
sored for your Ph.D.?

GREG PARNELL: I was centrally selected
late in the cycle. I had two mentors that told me
not to go get a Ph.D. They recommended I be a
career acquisition officer. I had two other men-
tors (with Ph.D.s), that recommended I get a
Ph.D.

Although I enjoyed project management, I
enjoyed the decision analysis more. I liked to
analyze major decisions and present my recom-
mendations to senior leaders more than the
day-to-day management. So, I decided to ap-
ply. The Air Force told me, “Sorry, we don’t
have any slots for you.” But in late January,
someone canceled and I got the slot. I applied
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to Stanford, MIT, and Georgia Tech. I was for-
tunate to go to Stanford.

BOB SHELDON: Normally, the Air Force
doesn’t like to spend money on big tuition col-
leges. How did you get to Stanford?

GREG PARNELL: I requested Stanford. I
called a captain at AFIT that approved the
school assignments and he was concerned
about the high cost. He put me on hold, came
back five minutes later and said you can go to
Stanford!

BOB SHELDON: Where were your assign-
ments on the ballistic missile program?

GREG PARNELL: The Ballistic Missile Of-
fice was in California, at the old Norton Air
Force Base before it closed.

BOB SHELDON: So you stayed out in Cal-
ifornia at Norton?

GREG PARNELL: Yes, we were there four-
and-a-half years and then we went up to North-
ern California for three years.

BOB SHELDON: How did you narrow it
down to the three colleges you applied to?

GREG PARNELL: I selected the three
schools by calling every operations research
school AFIT used. After talking to them about
their program, I asked them which three
schools were the best. Three schools were men-
tioned many times: Georgia Tech, MIT, and
Stanford. I knew Georgia Tech because I knew
the professors there. Two of the professors
taught me at Florida. Then I went to MIT in
February; the wind howling off the Charles
River was unbelievable. I was impressed with
their program.

The next week, I flew out to Stanford. The
sun was out and it was a spectacular day. I
talked to Professor Ronald Howard, one of the
fathers of decision analysis. In my meeting with
him, the first thing he said was, “How can I
help you make your decision?” I was also in-
terested in doing research at the Center for
International Security and Arms Control
(CISAC). It was a combination of great school,
great professors, great opportunities, and great
weather!

BOB SHELDON: Tell us about some of
your notable professors at Stanford.

GREG PARNELL: The person that has
been the most influential was Howard. Ron
was on my committee. Ron is still teaching and

I see him regularly at professional meetings.
My advisor was Don Dunn. Don taught public
policy, was interested in arms control, and was
a member of the CISAC. He taught me that
research was asking the right questions. I was
fortunate enough to have as my third commit-
tee member Alexander George, a well known
political scientist. Recently he became emeritus
professor. Also, Condi Rice was an assistant
director at CISAC. I was a teaching assistant for
one of her courses.

BOB SHELDON: Did you bump into
George Dantzig?

GREG PARNELL: I attended talks that he
gave, but I never took one of his classes. He was
well respected at Stanford.

BOB SHELDON: What was your thesis
topic at Stanford?

GREG PARNELL: I did my dissertation on
nuclear arms control during the height of the
nuclear arms build up (Parnell, “Large Bilateral
Reductions in Superpower Nuclear Weapons,”
Ph.D. Dissertation, Stanford University, July
1985). We looked at large bilateral reductions in
superpower nuclear weapons. We examined
the incentives for the two superpowers to com-
ply with or violate the treaty.

BOB SHELDON: How did you approach
your dissertation technically?

GREG PARNELL: The general area was
treaty verification. I researched the early writ-
ing on verification. We used decision analysis
and cooperative game theory. The key issues
were technology and information. If both su-
perpowers mutually agreed to do away with
nuclear weapons, the nation with the best in-
formation and best technology could recover if
the other nation violated the agreement.

BOB SHELDON: When you were finishing
up at Stanford, what kind of a job were you
looking for?

GREG PARNELL: As I started looking for
an operations research job, an officer at the
Operational Sciences Department contacted me
about teaching at AFIT. They were looking for
somebody that had some space experience to
lead their Space Operations Program and teach
operations research. I decided I would like to
teach.

BOB SHELDON: What year did you finish
at Stanford?
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GREG PARNELL: I finished in 1985 and
went to AFIT.

BOB SHELDON: What courses did you
teach?

GREG PARNELL: I taught operations re-
search (introduction to management science,
decision analysis, and simulation) and artificial
intelligence courses. I was there three years and
then went to the National Defense University
(NDU) as a research fellow. I also attended the
Industrial College of the Armed Forces, class of
1989.

BOB SHELDON: Did you develop any
new courses?

GREG PARNELL: I developed an artificial
intelligence and operations research course.

BOB SHELDON: Decision analysis has
caught on at AFIT. I see it still continues to be a
popular part of their curriculum. How did you
pick out the textbook and what you wanted to
teach?

GREG PARNELL: Joe Tatman was a Ph.D.
student with me at Stanford. Joe came to the
Math Department and started the decision
analysis course during my first assignment.
When I came back as Operational Sciences de-
partment head in 1993, I introduced the deci-
sion analysis sequence in the Operational Sci-
ences Department.

I used Bob Clemen’s Making Hard Decisions
(2nd Edition, Duxbury Press, 1996) for the in-
troductory decision analysis course. It was a
new book at the time. I also taught an advanced
decision analysis and a decision analysis prac-
tice course (using Professor Howard’s ap-
proach at Stanford). I first started teaching mul-
tiple objective decision analysis at Virginia
Commonwealth University in 1996. I used
Kirkwood’s Strategic Decision Making: Multiob-
jective Decision Analysis with Spreadsheets (Dux-
bury Press, 1997). I gave my notes to Jack Jack-
son, who taught decision analysis when I left.
Jack Kloeber, Stephen Chambal, and others
have taught decision analysis at AFIT. Dick
Deckro has also been a major part of the deci-
sion analysis program. His students have ap-
plied Value-Focused Thinking and multiple ob-
jective decision analysis in many important
problem domains.

BOB SHELDON: Did you consider being
selected for ICAF a good thing?

GREG PARNELL: Yes. I was selected as an
NDU fellow. The fellows then attend either
ICAF or National War College. My acquisition
experience put me in ICAF. I applied because I
thought it would be more research oriented and
I wanted work on nuclear force analysis. I was
excited about going to Washington. Five years
later, I was excited about leaving!

BOB SHELDON: How was your year at
ICAF?

GREG PARNELL: It was a great year. I
thought I was on an athletic scholarship. I
played softball, volleyball, and soccer. My
ICAF group studied the nuclear industry. The
highlight was the trip to the Soviet Union in the
spring of 1989. We were the first NDU group to
go to the Soviet Union in many years. Twenty
of us visited Moscow, Tbilisi (Georgia), Volgo-
grad, and St. Petersburg.

1989 was a dramatic time in Russian his-
tory. When the Secretary of Defense was brief-
ing us, one of the students who wanted to go to
the Soviet Union raised his hand and said, “Can
we go to the Soviet Union this year?” A week
later we found out we could. Since my research
project was related to strategic nuclear arms
control, I was selected to go.

BOB SHELDON: Did you meet some of
your Soviet counterparts?

GREG PARNELL: Yes, we did. We met
Soviet military and civilians in the four major
cities.

BOB SHELDON: What were your impres-
sions?

GREG PARNELL: Russia has a wonderful
history and culture. Unfortunately, my impres-
sion at the time was that the only thing that
worked was the military. The military was very
professional. In uniform, we attended the
WWII victory celebration in Volgograd. It was a
moving ceremony. We were treated like celeb-
rities. The lines at stores were what we ex-
pected. The best buildings were built before
1917. The people were in turmoil. One medical
student told us, “the only reason you would
come to visit us is to laugh at us.” We left the
Soviet Union on a train from St. Petersburg to
Finland. When we crossed the border, everyone
on the train cheered and applauded. I won-
dered what the Russian train employees and
guards must have thought.
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BOB SHELDON: Did you have a Pentagon
assignment lined up while you were at ICAF?

GREG PARNELL: I wanted to stay five
years in DC to get my daughter through high
school. As a lieutenant colonel, I was hired by
Air Force Studies and Analyses Agency (AF-
SAA) as a deputy division chief of the Force
Analyses Division in the Strategic Forces Direc-
torate.

BOB SHELDON: Who did you interview
with in Studies and Analysis? Maj Gen Harri-
son?

GREG PARNELL: No, this was during Maj
Gen Alexander’s tenure. The colonel who hired
me retired before I got there. Since I was the
senior lieutenant colonel in the division, I be-
came the acting division chief. At the time, all
the AFSAA division chiefs were rated. In my
first couple of weeks, we did a successful study
for General Larry Welch, the Air Force Chief of
Staff. The day after the briefing, my Director,
Col Knox Bishop told me “You’re now the di-
vision chief.”

BOB SHELDON: That first study you
worked on, did you use some of your OR ex-
perience?

GREG PARNELL: Yes, our major model
was called the Arsenal Exchange Model, devel-
oped by Bill Cotsworth. I had Bert Head (now
at NSA) as my deputy division chief and a
small group of analysts. The Arsenal Exchange
Model used goal programming to optimize nu-
clear force allocations. (It has subsequently
been modified by Bill for conventional forces.)
Fortunately, I had taught goal programming at
AFIT.

At the time all the strategic force analysts
(in different organizations and even in the same
organizations) used different strategic force da-
tabases! As a result, we could not easily com-
pare the results of studies without a lot of work.
We did an interesting study of strategic force
models involving the Joint Staff, OSD, Strategic
Air Command, AFSAA, and RAND strategic
nuclear models. All the models had different
algorithms. We wanted to compare the results
on standard problems. As we standardized the
data and the analysis assumptions, the model
results converged to the same answers! I
learned a valuable lesson. The three most im-

portant analysis variables are the analyst, the
data, and the model—in that order.

BOB SHELDON: Were all of those optimi-
zation models?

GREG PARNELL: Yes, they were all opti-
mization models but with different techniques.

BOB SHELDON: What other projects did
you work on?

GREG PARNELL: One of my bosses, Maj
Gen George Harrison, had a wonderful saying.
He said, “You can educate in advance, you can
support the decision maker in real time, or you
can analyze the fallout.” I tried to get my divi-
sion prepared to educate in advance or support
in real time. We did a lot of work to support the
Air Staff, which supported DoD, the Joint Staff,
and U.S. Strategic Arms Reduction Treaty
(START) negotiators.

One of the most interesting support the de-
cision makers in real time studies was determining
the START treaty drawdown requirements. The
START negotiating team knew where the su-
perpowers were today and the end point, but
they needed milestones to measure treaty com-
pliance. So Doug Owens, Bob Bivins, and I built
a linear programming model to evaluate the
different alternative drawdown milestones. We
showed one set of drawdown milestones was
the most robust solution. Our recommendation
became a part of the treaty. Of course the study
was classified at the time. We later published
the study when it was declassified (Owens, D.,
Parnell, G., and Bivins, R., “Strategic Arms Re-
duction Treaty (START) Drawdown Analyses,”
Operations Research, Vol 44, No. 3, May–June
1996, pp. 425–434).

BOB SHELDON: What was the size of that
problem? How many variables and constraints
did you work with? Hundreds or thousands?

GREG PARNELL: Hundreds. There were
many different force structures, delivery vehi-
cles, and weapons, so we had a large number of
constraints. You had to have constraints for
each milestone. Since we had all the databases
and knowledgeable analysts, we did the study
in a weekend.

BOB SHELDON: Was one of the guys pro-
ficient with an LP solver?

GREG PARNELL: Yes. We used LINDO.
BOB SHELDON: Who in the chain of com-

mand did you brief?
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GREG PARNELL: Initially, we only
briefed our two-star. Because it was so close
hold within the negotiation chain, it went
through the START negotiating team. We
briefed at the 06 level, and he took it from there,
using our charts to explain it to the State De-
partment negotiators. One of the team, Col Jae
Engelbrecht, became one of my good friends.
We later worked together on Air Force 2025
and with Toffler Associates.

BOB SHELDON: What was the impact of
the end of the cold war on AFSAA?

GREG PARNELL: I led an interesting
study for Maj Gen Harrison. In early 1990, it
became increasing clear that we could not base
our force structure analysis on potential
NATO/Warsaw Pact conflicts in the Fulda Gap
and Soviet/U.S. strategic nuclear balances. We
looked for a new framework for force structure
analysis. We came up with a force quality
methodology (similar to today’s capability
based planning). We focused on measuring the
force qualities we would need in the future for
a variety of alternative scenarios. Unfortu-
nately, our briefing had a long convoluted title.

Maj Gen Harrison liked the content but was
not comfortable with the title. Later that day,
after reading the new Air Force white paper:
Global Reach, Global Power, I went jogging.
While jogging, I figured out what to do. I re-
turned to the office and changed the title of our
briefing to Analyzing Global Reach, Global Power
(Parnell, G. and Eilers, R., “A Methodology for
Analyzing Global Reach—Global Power,”
White Paper, AF Center for Studies & Analy-
ses,” Air Force Studies and Analysis Agency,
1990).

I immediately took the new briefing into
Maj Gen Harrison. He looked at the new title
and said, “That’s great.” He took the briefing to
the Assistant Vice, who said, “Great.” The
A/Vice took it to the Vice Chief of Staff and in
same day it was in the Chief of Staff’s package
for overnight reading.

We ended up giving the briefing to most of
the Air Force leaders in the Pentagon. We had
one hour with General Larry Welch, who was
the Chief. I briefed for half an hour and General
Welch talked to us for half an hour about what
he wanted us to do. We incorporated his ideas.
Then General Dugan took over, we took the

briefing to him. We spent an hour with him and
he sent us to brief Secretary of the Air Force
Don Rice. I went to schedule it on Secretary
Rice’s calendar. Rice happened to walk out of
his office and his aide asked the Secretary about
the briefing. Secretary Rice looked at the title
and told the aide to schedule four hours for the
briefing.

He spent several hours with us. This was
an important lesson for me. Secretary Rice
wanted to spend quality time with us because
he wanted to get his analytical organization
focused on his vision. He heard our ideas and
gave us clear guidance on what he expected us
to do.

It took AFSAA a year to analytically refo-
cus and change our databases with new sce-
nario data. Greg McIntyre led that important
effort.

BOB SHELDON: You say Dr. Rice gave
you directions in that four-hour session after
you briefed him. What kind of directions did he
give you?

GREG PARNELL: Both Welch and Rice
wanted us to focus on the force quality issues.
They believed that quantities would be deter-
mined more by budget than before. Since de-
velopment programs take so long, it is critical
to get the right force quality in development.
Good examples of force qualities were stealth,
continuous intelligence, precise navigation, and
precision weapons. Of course, there are syner-
gies, knowing precise target locations, using
GPS, and dropping dumb bombs has been very
effective.

BOB SHELDON: Let me backtrack. When
did you first go to a MORS Symposium?

GREG PARNELL: I went to a MORS Sym-
posium in about 1986 and got involved in
working groups during my AFIT assignment.
Clay Thomas and Jim Bexfield got me into
MORS leadership. Clay was the Chief Scientist
and Jim Bexfield was Chief Analyst of the Air
Force Studies and Analyses Agency while I was
at AFIT. They visited us every year to bring
thesis topics. They became life-long mentors, as
I’m sure Clay was to you. While I was at ICAF,
they helped me get elected to the MORS Board
of Directors. I became a director in 1989 as I
started at Studies and Analyses.
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BOB SHELDON: You’ve done a number of
tutorials at MORS. When did you start doing
those?

GREG PARNELL: I started in about 1996.
The tutorials were about Value-Focused Think-
ing using multiple objective decision analysis.

BOB SHELDON: What was your initial
impression of MORS when you first attended a
MORS Symposium?

GREG PARNELL: I was very impressed
from the start by the MORS staff (Dick Wiles,
Natalie, and Cynthia) and the quality of the
participants. I thought it was just a great pro-
fessional society; much better organized and
more customer focused than other professional
societies.

BOB SHELDON: Do you recall some of
your early MORS committees?

GREG PARNELL: I was on the Prize Com-
mittee the first year. Then I went through the
meetings side. I was the Working Group/Com-
posite Group Chair my second year. I met a lot
of MORS leaders coordinating all the working
groups and composite groups. My next job was
Vice President for Meeting Operations. I led a
major working group realignment to provide
better post-cold war focus. The next year I
served as President, then Past President. I
learned that the best job in MORS is Past-Past
President! The job has good prestige and no
assignments!

BOB SHELDON: As VP for Meeting Oper-
ations, did you face any hurdles?

GREG PARNELL: Things were organized
pretty well. I inherited a good slate of meetings.
We generated more ideas and we executed the
ones the sponsors wanted.

BOB SHELDON: I think you were the sec-
ond active duty officer to become President of
MORS. Did you have any trepidation about
conflict of interest for active duty officers?

GREG PARNELL: I can’t recall any con-
cerns or any conflict of interest issues that oc-
curred during my tenure.

BOB SHELDON: Any other tough issues
during your time on the MORS Executive
Council?

GREG PARNELL: I was fortunate to fol-
low E. B. Vandiver and Van had a great plan to
build on. My theme for the year was quality
support to our customers. I tried to continue to

focus our activities on our clients and analysts.
We also moved the Military Operations Research
Journal closer to realization.

BOB SHELDON: You briefed each of the
sponsors as the MORS President? Remember
any specific feedback you got from them?

GREG PARNELL: I do remember that they
gave us clear guidance on the meetings they
wanted. I do not recall any other specific feed-
back.

BOB SHELDON: You were involved in
developing a workshop for Admiral Owens.
How did MORS get such a quick turnaround
for the meeting?

GREG PARNELL: I think it was the year
after I was President. When you have the Vice
Chairman of the Joint Chiefs ask you to help,
everybody was motivated. People thought it
was a great opportunity to participate.

BOB SHELDON: Do you recall any of the
fallout after that meeting?

GREG PARNELL: Change in the military
(or any large organization) is difficult. Some
did not understand Admiral Owens’ joint war-
fare objectives and some opposed these objec-
tives actively or passively. Some wanted to con-
tinue to think about major service systems and
not have to show how service systems sup-
ported joint warfare.

BOB SHELDON: Let’s get back to your
time at AFSAA. Talk about the transition when
Brig Gen Eberhardt took over and AFSAA be-
came part of PE. Was it difficult to make that
transition?

GREG PARNELL: Very difficult. Maj Gen
George Harrison, AFSAA commander, put to-
gether a team which I led. Dan Barker was a
key member of the team. He gave us one day to
reorganize Studies and Analyses. We had about
ten people from all the AFSAA divisions on the
team. There were a couple guidelines. First, we
had to have an organizational element provid-
ing resource allocation analysis support to PE.
Second, General McPeak, then Chief, had a new
rule we had to follow—colonels could not
work for more than one colonel in their man-
agement chain. This was a big deal. In Studies
and Analyses we had Colonels as directors,
deputy directors, and division chiefs. Since the
Commander of AFSAA would be a colonel we
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could have only divisions. (Later Tom Cardwell
became the Commander of AFSAA.)

I’ll never forget the expression on Maj Gen
Harrison’s face when we showed him the num-
ber of analysts he had out of 150 people. We
were able to reorganize to about 100 people
without a significant change in the number of
analysts. However, we since developed about a
30 person Resource Analysis Division that re-
duced the number of analysts available for pre-
vious AFSAA missions. Our reorganization
plan was briefed to Maj Gen Harrison and Brig
Gen Eberhardt. The plan was accepted without
change.

BOB SHELDON: You did the planning for
the transition of AFSAA under PE. How was
the actual transition?

GREG PARNELL: The transition was dif-
ficult. Working for PE changed the culture of
the organization. The culture of Studies and
Analyses was about the number of stars that
you could brief the results of your study. We
now had a BG, and not MG, who was focused
on resource allocation to develop the Air Force
Program. His focus was the Planning Program-
ming Budgeting System process, not briefing
studies. So the people in the new Resource
Analysis Division were getting all the visibility
with PE. During the major programming phase,
PE focused only on resource allocation. After
these intense phases, the PE leadership took
leave and then started preparing for the next
cycle.

My division’s job was to provide resource
allocation analyses to support senior leader de-
cision-making. To make a large number of pro-
gram decisions (50–100 per briefing), we had to
boil everything down to one analysis chart. AF-
SAA analysts would do a briefing and then one
of my guys would work with them to boil it
down to one chart. If an explanation was re-
quired, I would explain the chart since the anal-
ysis team was not in the briefing. This was a
major culture change. The AFSAA analyst may
have had a direct impact on a budget decision
but did not get to brief his/her 30 charts to
several generals.

BOB SHELDON: I understand that Brig
Gen Eberhardt used different ways of introduc-
ing you to the Secretary of the Air Force as

compared to the Chief of Staff of the Air Force.
Explain that.

GREG PARNELL: At that time, General
McPeak was the Chief and Don Rice was the
Secretary. General McPeak did not like the
word “analysis.” On the other hand, he liked
good data to help him make decisions. So when
I would brief General McPeak, Brig Gen Eber-
hardt would say, “This is Greg Parnell from Air
Force Programs and Evaluation.” When we
took the same briefing to the Secretary of the
Air Force, Don Rice, former President of
RAND, he would say, “This is Greg Parnell
from Air Force Studies and Analyses.”

BOB SHELDON: Give us more of your
impressions about Dr. Rice.

GREG PARNELL: Don Rice was a great
Secretary of the Air Force. He led the Air Force
in a very critical period. He was easy to brief
and asked great questions. He was very in-
volved in resource allocation. He wanted to get
programs in the right mission bins and then
look at tradeoffs within the missions. Most of
our analysis for him was within the missions,
e.g., space systems, conventional forces, nuclear
forces. He and the Chief decided the relative
allocation between missions.

I remember one amusing story. We briefed
the Air Force budget to him with the Vice Chief
and all the three-stars. This briefing was very
long. You could tell people were starting to
squirm in their seats. Finally, his aide said, “Sir,
there’s a telephone call you need to take.” The
Air Force senior leaders literally knocked chairs
over as they rushed to the bathrooms!

BOB SHELDON: You spent a number of
years in the nuclear analysis. Did you ever get
any advice from Lt Gen Glenn Kent?

GREG PARNELL: Yes. Two of my early
mentors Colonels Bill Crabtree and Carl Case
connected me with Glenn Kent. When I was
managing the MX Transporter I had built a
chart to explain my development program.
When the chart was presented to the Air Force
Scientific Advisory Board, Lt Gen Kent said,
“That was a great chart, who developed it?”
And they said, “This young guy out of ballistic
missile office.” Subsequently, Colonels
Crabtree and Case arranged for me to spend
one full day with Glenn Kent. He provided
some lessons that I still use:
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• “There are benefits and there are costs.
Never mix the two.”

• “Always look at the maximum benefit for
fixed cost or the minimum cost for fixed
benefit.”

• “If a briefer does not precisely define the
terms used in the briefing, it will be a waste
of time to hear their briefing.”

When I was department head at AFIT, every
year we invited him to talk to students and
faculty. It was always a great visit. Here is one
of my favorite Glenn Kent stories. We were
having dinner at the Officers’ Club at Wright
Patt. At the time, he was strongly advocating
his ‘Strategy to Task’ methodology. He said
“Greg, what is your opinion of Strategy to
Task.” So I thought carefully and said “I like it
because it’s a very logical process starting with
the strategy through the operations concept to
the tasks. However, magic has to occur in about
two places.” He looked at me, and without
missing a beat, said, “Only two?”

BOB SHELDON: At the end of your tour at
AFSAA, did you want to return to AFIT or did
somebody twist your arm?

GREG PARNELL: No, I wanted to go to
AFIT. Maj Gen Eberhardt wanted me go to J-8
with him but finally agreed to let me go. After
the Air Force, I planned to be a professor and a
consultant. The best transition path for me was
to go back to AFIT as department head.

BOB SHELDON: I take it you really en-
joyed your first tour teaching at AFIT? What
was it you found so attractive about the teach-
ing environment?

GREG PARNELL: Yes, I did. I have always
enjoyed teaching and mentoring students. I
liked the variety of problems and the ability to
choose the problems I work on. I usually did
not get to choose my problems in Studies and
Analyses. I also liked the flexible schedule. I
could take off at 4:00 to coach my son’s soccer
team, spend time with the family, and then
prepare my lecture at 9:00 at night (usually for
the next day!).

BOB SHELDON: One of the ongoing is-
sues is keeping AFIT responsive to the Air
Force’s needs. How did you address that issue?

GREG PARNELL: I designated a faculty
member as liaison with every major command

analysis office. Their job was to coordinate the-
sis topics, slots for graduates, and trips to AFIT.
I tried to align the assignments with research
interests. We also encouraged students to do
funded research for the major commands for
their thesis work.

BOB SHELDON: Can you think of any
specific things you did to respond to Air Force
needs during your tenure at AFIT?

GREG PARNELL: Yes, that is another
good story. Remember, I mentioned Jae En-
gelbreht from our arms control studies. Shortly
after I had gotten to AFIT, Jae called me up on
a Thursday afternoon. He said, “Greg, I need
your help. We have done this study called
SPACECAST 2020. We are 11 months into a
12-month study and we have no idea how to
evaluate the alternatives. Our study director, Lt
Gen Jay Kelley has to brief General McPeak,
who commissioned the study. Can we fly out
tomorrow morning and meet with you Friday
afternoon and Saturday?” My friends call this
story “Desperate men come to Dayton, Ohio.”

The study alternatives were space system
concepts. Engineering data did not exist to
evaluate the alternatives using models and sim-
ulations. We developed a multiple objective de-
cision analysis methodology to rank the alter-
natives. Roger Burk, one of my faculty and now
a colleague at USMA, worked with me on the
study (Burk, R. C. and Parnell, G. S., “Evaluat-
ing Future Space Systems and Technologies,”
Interfaces, Vol 27, No 3, May–June 1997, pp.
60–73).

The next week Roger and I went to Max-
well to brief Lt Gen Jay Kelley and all his senior
staff. I knew it was important when he said,
“This discussion has no time limit.” After a
detailed briefing and lots of discussion, he ap-
proved our plan. Roger worked full time for a
month on the analysis. The study and the anal-
ysis were very successful.

This study led to a major AFIT role in Air
Force 2025 which I supported as a consultant to
the Air Force (Jackson, J. A., Parnell, G. S.,
Jones, B. L., Lehmkuhl, L. J., Conley, H., and
Andrew, J., “Air Force 2025 Operational Anal-
ysis,” Military Operations Research, 1997, Vol 3,
No 4, pp. 5–21). AFIT worked for a full year on
the second study. Air Force 2025 made an im-
portant impact on the Air Force.
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BOB SHELDON: After you had been at
AFIT, you decided to hang up your hat and
retire. What was your decision algorithm for
deciding what to do at that point?

GREG PARNELL: That’s a great question.
I took up golf while I was in Dayton because
my sons wanted to play golf. My good friend
Bill Rowell got the three of us into golf. We
decided we wanted to move to a more golf
friendly climate. Timing for my second son’s
high school was also a consideration. I decided
to retire at 25 years to give him three years at
his new high school. I interviewed with a sev-
eral schools but decided to go Virginia Com-
monwealth University (VCU) in Richmond,
VA.

BOB SHELDON: Was it traumatic to retire
from the Air Force, or was it something you
looked forward to?

GREG PARNELL: It was not traumatic.
We retired near Fort Lee and a lot of our friends
were retired officers. I also started doing con-
sulting on military problems.

BOB SHELDON: What courses did you
teach at Virginia Commonwealth?

GREG PARNELL: I taught two existing
courses (deterministic and stochastic methods)
and I added two courses. The first was decision
and risk analysis (similar to AFIT course but
added risk analysis material). I also developed
a new multiple objective decision analysis
course. This is the course I mentioned earlier
that Jack Jackson introduced at AFIT.

BOB SHELDON: You’ve been teaching
Value-Focused Thinking (VFT) to your stu-
dents and in professional short courses. When
did you first pick that up?

GREG PARNELL: Multiple objective deci-
sion analysis (Keeney, R.L. and Raiffa H. Deci-
sion Making with Multiple Objectives: Preferences
and Value Tradeoffs, New York: Wiley, 1976) is
the mathematics behind Value-Focused Think-
ing (Keeney, R.L. Value-Focused Thinking: A Path
to Creative Decisionmaking, Cambridge, Massa-
chusetts: Harvard University Press, 1992). We
use VFT to define our values and use our val-
ues to create better alternatives. SPACECAST
2020 used multiple objective decision analysis
to evaluate the alternatives but in one month,
we did not have time to use VFT to improve the
alternatives. Air Force 2025 was my first use of

VFT. While at VCU, I started teaching multiple
objective decision analysis short courses. In the
last 10 years, I have taught over 30 of the
courses for government and industry.

BOB SHELDON: Did you ever work with
Ralph Keeney, developer of VFT?

GREG PARNELL: I know Ralph well from
the Decision Analysis Society and journal edi-
torial activities.

BOB SHELDON: How did you like the
teaching at VCU as opposed to AFIT?

GREG PARNELL: I enjoyed teaching at
VCU. We had a small operations research pro-
gram with many of our graduate students be-
ing part time with jobs in the Richmond area.
Part time students were not able to focus on
research as much as the full time AFIT stu-
dents.

BOB SHELDON: So after four years, did
you jump at the chance to go to West Point?

GREG PARNELL: No. When the first West
Point faculty member asked me to apply, I said
no. VCU had treated me well and my wife
enjoyed Richmond. Then a second faculty
member called. Again, I said no. I had just
gotten tenure and an academic promotion. Fi-
nally, the department head, COL Jim Kays,
called. After talking to Jim, I went home and
told my wife that maybe the Lord was trying to
tell us something. So we talked about it and I
took Eileen with me to the interview. When I
was offered the job, we decided to go to West
Point.

BOB SHELDON: Have there been a lot of
changes in the Systems Engineering Depart-
ment since you have been here?

GREG PARNELL: Yes. The department
was started in 1989 by Jim Kays. The second
department head, Mike McGinnis, arrived the
same summer as I did. It has been my honor to
serve with Mike. He and his leadership team
built on a solid foundation and developed
many new programs to take the department to
the next level (McGinnis, Michael L., Ph.D.,
“Transforming the Department: 1999–2004”
Technical Report No. DSE-TR-04-29, DTIC #:
ADA424113, Operations Research Center of Ex-
cellence, Department of Systems Engineering,
West Point, NY, May 2004).

BOB SHELDON: Tell us about the Chair
that you filled.
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GREG PARNELL: I have just finished a
six-year tour as the Class of 1950 Chair of Ad-
vanced Technology in the Department of Sys-
tems Engineering. The class donated funds to
the academy to fund a chair. The chair holder
would rotate between engineering depart-
ments. I was selected as the first chair. It was a
great opportunity to meet and work with the
Class of 1950. In summer 2005, General Paul
Kern, USA, retired, became the second chair
holder. GEN Kern will teach in the Civil and
Mechanical Engineering Department.

BOB SHELDON: What’s your position in
the fall?

GREG PARNELL: I’ll be on sabbatical for a
year. Then I’ll return as a Title 10 Professor.

BOB SHELDON: What’s a Title 10 Profes-
sor?

GREG PARNELL: All of the civilian pro-
fessors and key academic staff are Title 10 in-
stead of GS. We serve on six-year renewable
contracts with a separate pay scale.

BOB SHELDON: How would you com-
pare teaching here at West Point to AFIT?

GREG PARNELL: It’s undergraduate ver-
sus graduate material. Also, AFIT students
were older, usually married, and more focused
on academics. The cadets are very smart and
(generally) hard working. Cadets have many
other activities. However, they’re great young
men and women, and it’s an honor to be here.

BOB SHELDON: What about the West
Point area appeals to you?

GREG PARNELL: We live in a very nice
village called Cornwall-on-Hudson just over
the mountain north of West Point. We are 45
minutes from “The City.” For seven months a
year it is great. The Hudson Valley is relatively
cool in summer, lovely in spring, and spectac-
ular in the fall. Then there is winter.

BOB SHELDON: But you lived in Dayton
so you’re used to that.

GREG PARNELL: That’s true.
BOB SHELDON: Tell us about your asso-

ciation with Toffler Associates.
GREG PARNELL: While in the Air Force, I

worked on SPACECAST 2020 for Lt Gen Jay
Kelley, Air University Commander. Dick Sz-
franski, and Jae Engelbrecht also had key roles
in the study. After I retired, I worked on Air
Force 2025 with the same team. The next year

all three retired and helped found Toffler As-
sociates, a new consulting firm founded by
Alvin and Heidi Toffler, the well known futur-
ists and authors of Future Shock and the The
Third Wave, and Tom Johnson, a very experi-
enced consultant.

After retiring I had consulted with IDA and
TASC. Then Dick Szfranski asked me to consult
with Toffler Associates. I decided it would be
fun to work with them and a great opportunity
to meet and work with Alvin and Heidi. I
worked with Toffler Associates on a variety of
strategic planning and some decision analysis
projects for six years.

BOB SHELDON: How did you decide to
change to Innovative Decision Inc.?

GREG PARNELL: In late 2003, Terry
Bresnick, President of Innovative Decision, Inc.,
approached me about joining a new decision
analysis consulting firm that he and other part-
ners were forming. One partner, Joe Tatman,
was a good friend. In addition, I had known
Terry and Dennis Buede for years. I had been
thinking about more technical work and this
was an ideal opportunity. Since then, IDI has
grown to about 20 people.

BOB SHELDON: What customers do you
support?

GREG PARNELL: IDI works with intelli-
gence, defense, homeland security, and com-
mercial companies. In addition, they teach de-
cision analysis and systems engineering
courses. I work part-time on IDI projects. I do
some travel and do other work at home.

BOB SHELDON: What courses are you
teaching now?

GREG PARNELL: I teach decision analysis
and operations research courses. We have no
more than 18 students per section. I teach two
sections per semester and lead a senior cadet
capstone research project with three to five ca-
dets per year.

BOB SHELDON: What kind of capstone
projects have you led?

GREG PARNELL: I have done a variety of
them in the six years. I started with an intelli-
gence project for the Army Ground Intelligence
Center. Then we worked on Army resource
allocation projects for G-3 for three years. For
the last two years, I have worked on base re-
alignment and closure implementation.
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BOB SHELDON: What major studies have
you been involved in at West Point?

GREG PARNELL: I have worked on three
major studies. The first study was the Installa-
tion Management Study (IMA) led by then
COL Tim Trainor. The purpose of the IMA
study was to assess the regional organization
structure of IMA. This was a six month study.
The second study was the Residential Commu-
nity Initiative (RCI) Study led by COL Bob
Powell. The purpose of this six month study
was to review the RCI program and make rec-
ommendations for improvement. Both of these
studies were done for the ASA (Installations
and Environment). The third major study I
worked on was the Army Base Realignment
and Closure 2005 study. I spent about three
years working on the study. I supported Dr.
Craig College, COL Bill Tarantino, and LTC Lee
Ewing.

BOB SHELDON: You’ve also been in-
volved with INFORMS. Tell us how you got
involved in that.

GREG PARNELL: Like MORS, I got in-
volved by going to the meetings. My INFORMS
involvement was in three areas: the Military
Applications Society (MAS), the Decision Anal-
ysis Society (DAS), and the Richmond-Tidewa-
ter Chapter of INFORMS. I usually participated
in MAS and DAS sessions at INFORMS. I
helped establish the Richmond-Tidewater
chapter of INFORMS and served as President.
Shortly after coming to West Point I got elected
to the councils of both MAS and DAS. I chose to
focus on the DAS because decision analysis is
my primary research area. I was elected Presi-
dent of DAS in 2004. I will serve as President
until October 2006. Then I will serve as Past
President for two years. After being president
of DAS and MORS, I plan to retire from pro-
fessional society elected offices! Both have been
great opportunities for service and building
friendships.

BOB SHELDON: How large is the Deci-
sion Analysis Society?

GREG PARNELL: We are currently the
second largest society in INFORMS with about
940 members.

BOB SHELDON: Do you hold your own
separate meetings?

GREG PARNELL: We hold our meetings
in conjunction with INFORMS. We also sup-
port decision analysis tracks at international
meetings.

BOB SHELDON: Does DAS tend to be
mostly academics?

GREG PARNELL: Professors and students
make up 57% of the membership. The rest are
practioners.

BOB SHELDON: Since you’ve been in-
volved in several different national societies,
talk about MORS as a professional society com-
pared to the others.

GREG PARNELL: MORS is my favorite
professional society. MORS is very well run
and mission focused. I have made a lot of great
friends through MORS. My contacts in MORS
led directly to my job at West Point.

BOB SHELDON: You just received the
Thomas Award, and Clay Thomas was one of
your mentors. What was your relationship and
what did you learn from him?

GREG PARNELL: Clay could always see
the essence of the problem and would always
provide sound advice. In AFSAA, when I
started a new project, I would take my ideas to
Clay for advice. I would sit in his office and just
explain what I was doing and get his thoughts.
He was always very helpful. Many times, he
would say, “Well, we wrote a paper on that.”
He would shuffle through a pile of papers and
pull out the paper! Also, he always gave sage
advice on MORS activities.

BOB SHELDON: Now you mentor young
analysts. Do you have any young analysts that
you’ve mentored that have done well and you
would like to claim you have influenced?

GREG PARNELL: I enjoy working with
and mentoring young analysts. I like to claim I
influenced all of them! I know I learn a lot from
each of them. Jack Jackson was a student of
mine as a young major. He worked for me at
AFIT and we worked on research projects after
I retired. He currently works for SAIC. We
sponsor his son Daniel at West Point. I hired
Jack Kloeber as a new Army LTC at AFIT. We
have worked together on several studies and
professional society actives. He’s currently in
charge of pharmaceutical R&D portfolio analy-
sis for Johnson & Johnson. More recently, I
worked closely with several great young offic-
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ers at West Point. LTC Barry Ezell, one of these
outstanding officers, is now at Army Capabili-
ties and Integration Center. Another officer,
MAJ Brian Stokes now works for Army G-8. On
BRAC, I worked closely with LTC Lee Ewing,
now a professor at NPS. Lee did a great job on
BRAC. At IDI, I work closely with Don Buck-
shaw and Bob Liebe, two outstanding decision
analysts.

BOB SHELDON: Since MORS helps foster
mentoring, any advice about how we can do a
better job of that?

GREG PARNELL: I like the junior/senior
analysts sessions that we have. I think those are
very useful. But most mentoring happens infor-
mally. For example, Jim Bexfield mentored me
and helped me get elected to the MORS Board.
Later, he asked me to be a consultant for him
when he was at IDA.

BOB SHELDON: You’re presenting a pa-
per this week. Will you be sitting in some of the
other working group sessions?

GREG PARNELL: I will be attending the
Decision Analysis Working Group.

BOB SHELDON: Talk about your duties as
the MOR Journal editor.

GREG PARNELL: Our first editor, Peter
Purdue, gets the primary credit for establishing
the MOR Journal. Jim Kays and E.B. Vandiver
played very important roles. I was the second
editor. My job was to maintain quality and
increase production. We had to obtain more
quality papers and get more reviewers in-
volved to speed up the review process. I
viewed it was my job to talk people into writing
papers and to select great associate editors. I
served as Editor for over five years until the
selection of Dick Deckro. Dick has done a great
job with the journal.

BOB SHELDON: Did you just use the con-
nections you had from your MORS years, or
did you find some new contacts?

GREG PARNELL: Both. We took award
papers and published them each year. I used
every opportunity to encourage people to write
up good studies for publication. Each year, I
deputized every Board member to help. I told
them you either have to find a paper or write a
paper! It was a lot of work but we got the
production rate up thanks to the great work of
the authors and the associate editors.

BOB SHELDON: We always have a
tradeoff between good peer review of the pa-
pers and timely turnaround. How did you
manage the tradeoff between those two?

GREG PARNELL: It’s all about people. I
found good people that could do quality re-
views in a timely manner. To ensure quality
each paper had to be recommended for accep-
tance by two associate editors: one from the
operations research technique and one from the
problem domain. For example, a paper using
an optimization model for a naval application
would have two reviewers: an optimizer and a
naval expert. The optimizer’s job was to assess
the quality of optimization work. The naval
expert’s job was to assess the value of the work
to the naval application area.

BOB SHELDON: How many of them came
back with two yes’s?

GREG PARNELL: We had an acceptance
rate of about 45%. Almost no papers were ac-
cepted on the first review. Papers were usually
accepted subject to revisions.

BOB SHELDON: How do you view our
MOR technical papers as compared to technical
papers in other journals?

GREG PARNELL: I think the journal is
very good. Our niche is military operations re-
search applications. We also publish some arti-
cles on military OR theory and heritage. Al-
though we are a relatively new journal by
academic standards, the journal has established
a record of quality articles. I believe it is the best
journal for military OR applications in the
world.

BOB SHELDON: What other professional
service activities have you been involved in?

GREG PARNELL: Since 2002, I have been a
member of the Technology Panel of the Na-
tional Security Agency Advisory Board. I spend
two days a month supporting them.

BOB SHELDON: Any other parting shots?
GREG PARNELL: As I reflect back on my

career, I have been very fortunate. First, I have
had wonderful support from my wife and fam-
ily. They have let me pursue education oppor-
tunities and take new job challenges. Second, I
was able to have operational and management
experience before I became an operations re-
search analyst and professor. This gave both:
experience and credibility. Third, I was very
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fortunate to have mentors that gave me great
advice along the way. Fourth, I have had the
opportunity to work on very important projects
with great people. I have worked on Air Force,
Army, intelligence, environmental, and home-
land security problems. I have made life long

friendships. Fifth, I have had significant oppor-
tunities for professional service in professional
societies and advisory boards. These have also
led to wonderful friendships. Finally, I have
had many opportunities to mentor young offic-
ers and civilians.
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